Isaac V Kauvar

ikauvar@


> about


I recently defended my PhD at Stanford University in Electrical Engineering, supported by a NSF Graduate Research Fellowship. I am fascinated by both light and the brain, and I leverage optics and imaging to understand mechanisms of neural information processing and cognitive control.


> research


As a member of the Deisseroth and Wetzstein labs, I am broadly interested in designing and using new tools to understand the links between animal behavior and the structural and functional connectivity of neural circuits.


> art


I like to draw; I design clothing apparel you can buy here!
I am a photographer; check out some of my work here.


> publications


Cortical observation by synchronous multifocal optical sampling reveals widespread population encoding of actions.
Kauvar I*, Machado T*, Yuen E, Kochalka J, Choi M, Allen WE, Wetzstein G, Deisseroth K. * = equal contribution
Neuron (2020).
[site: use COSMOS!][PDF][supplement][link][press]
A light-field metasurface for high-resolution single-particle tracking.
Holsteen A*, Lin D*, Kauvar I, Wetzstein G, Brongersma M. * = equal contribution
Nano Letters (2019). [PDF][link]
Ancestral circuits for the coordinated modulation of brain state.
Lovett-Barron M, Andalman AS, Allen WE, Vesuna S, Kauvar I, Burns VM, Deisseroth K.
Cell (2017). [PDF]
Modulation of prefrontal cortex excitation/inhibition balance rescues social behavior in CNTNAP2-deficient mice.
Selimbeyoglu A, Kim CK, Inoue M, Lee SY, Hong ASO, Kauvar I, Ramakrishnan C, Fenno LE, Davidson TJ, Wright M, Deisseroth K.
Science Trans. Med. (2017). [PDF]
Global representations of goal-directed behavior in distinct cell types of mouse neocortex.
Allen WE*, Kauvar I*, Chen MZ, Richman E, Yang SJ, Chan K, Gradinaru V, Deverman BE, Luo L, Deisseroth K.
Neuron (2017). * = equal contribution [link][PDF][press]
Aperture interference and the volumetric resolution of light field fluorescence microscopy.
Kauvar I, Chang J, Wetzstein G.
IEEE Intl. Conf. on Comp. Photog. (ICCP) (2017). [site][PDF][supplement]
Variable Aperture Light Field Photography: Overcoming the Diffraction-limited Spatio-angular Resolution Tradeoff.
Chang J, Kauvar I, Hu X, Wetzstein G.
IEEE CVPR (2016). [site][PDF][supplement]
Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain.
Kim CK*, Yang SJ*, Pichamoorthy N, Young NP, Kauvar I, Jennings JH, Lerner TN, Berndt A, Lee SY, Ramakrishnan C, Davidson TJ, Inoue M, Bito H, Deisseroth K. * = equal contribution
Nature Methods (2016). [PDF][supplement]
SPED Light Sheet Microscopy: Fast Mapping of Biological System Structure and Function.
Tomer R, Lovett-Barron M, Kauvar I, Andalman AS, Burns VM, Sankaran S, Grosenick L, Broxton M, Yang S, Deisseroth K.
Cell 163:7 (2015). [PDF]
Extended field-of-view and increased-signal 3D holographic illumination with time-division multiplexing.
Yang SJ, Allen WE, Kauvar I, Andalman AS, Young NP, Kim CK, Marshel JH, Wetzstein G., Deisseroth K.
Optics Express 23:25 (2015). [link] [site] [PDF]
Adaptive color display via perceptually-driven factored spectral projection.
Kauvar I, Yang SJ, Shi, L, McDowall I, Wetzstein G.
ACM Transactions on Graphics (TOG) (2015): 165. [PDF]
Natural Neural Projection Dynamics Underlying Social Behavior.
Gunaydin LA*, Grosenick L*, Finkelstein JC*, Kauvar IV*, Fenno LE, Adhikari A, Lammel S, Mirzabekov JJ, Airan RD, Zalocusky KA, Tye KM, Anikeeva P, Malenka RC, Deisseroth K. * = equal contribution
Cell (2014). [PDF ][ Stanford Medicine][Scope Blog][LA Times][TIME]
The Role of Electron Affinity in Determining Whether Fullerenes Catalyze or Inhibit Photooxidation of Polymers for Solar Cells.
Hoke E, Sachs Quintana IT, Lloyd MT, Kauvar IV, Mateker WR, Nardes AM, Peters CH, Kopidakis N, McGehee MD.
Advanced Energy Materials (2012). [PDF]
Unconventional Face-On Texture and Exceptional In-Plane Order of a High Mobility n-Type Polymer.
Rivnay J, Toney MF, Zheng Y, Kauvar IV, Chen Z, Wagner V, Facchetti A, Salleo A.
Advanced Materials (2010). [PDF]


> previous


In 2019 I worked on an ambitious 'moonshot' using machine learning (mostly Graph Neural Networks) as an AI@X resident (i.e. intern...) at X, Google's secretive R&D lab.

In 2014 I worked as a computational imaging engineer at Light.

I spent the summer of 2013 traveling along the northern Mediterranean, shooting rolls and rolls of black and white film. These photographs led to a solo exhibition in the Stanford SubGallery (many of which can be viewed here).

In 2012-2013 I completed a M.Sc. in Electrical Engineering at Stanford University on an IEEE Charles Legeyt Fortescue Scholarship. I studied primarily machine learning, image processing, and photography.

During the summer of 2012, I worked at Apple as part of the Panel Process and Optics team where I leveraged my background in optical physics to improve the liquid crystal display stack, resulting in this patent.

Before I happened upon imaging, photography, and neuroscience, I was most passionate about renewable (in particular, solar) energy conversion. As an undergraduate at Stanford University, majoring in Engineering Physics, I worked with Alberto Salleo and at the National Renewable Energy Laboratory, yielding two publications in the realm of improved organic semiconductors and lifetime stability of organic photovoltaics.


>> undergrad projects...


Ferrofluid music visualizer
An iPod controlled sound system with a dynamic equalizer and a ferrofluid wave chamber controlled by electromagnets synced to the music. (The linked video shows the not-quite-finished product).