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Abstract

Model-based reinforcement learning (MBRL) is a promising route to sample-
efficient policy optimization. However, a known vulnerability of reconstruction-
based MBRL consists of scenarios in which detailed aspects of the world are
highly predictable, but irrelevant to learning a good policy. Such scenarios can
lead the model to exhaust its capacity on meaningless content, at the cost of ne-
glecting important environment dynamics. While existing approaches attempt to
solve this problem, we highlight its continuing impact on leading MBRL meth-
ods —including DreamerV3 and DreamerPro— with a novel environment where
background distractions are intricate, predictable, and useless for planning future
actions. To address this challenge we develop a method for focusing the capacity of
the world model through synergy of a pretrained segmentation model, a task-aware
reconstruction loss, and adversarial learning. Our method outperforms a variety of
other approaches designed to reduce the impact of distractors, and is an advance
towards robust model-based reinforcement learning.

1 Introduction

Model-based reinforcement learning (MBRL) is a promising path to data-efficient policy learning,
and recent advances show impressive performance with high dimensional sensory data [Hafner et al.,
2023]. A central component of MBRL is a world model, which is trained to predict how an agent’s
actions impact future world states. However, the world is highly complex while the capacity of a world
model is finite, and ultimately only a subset of the components and dynamics of the environment can
be accurately modeled. In this setting, distracting stimuli can be particularly problematic, as they
waste the capacity of the world model on useless details.

To address the challenge of distractors, a number of MBRL methods seek to isolate the most important
components of an environment, including structural regularizations [Deng et al., 2022, Fu et al., 2021,
Wang et al., 2022], pretraining the agent’s visual encoder [Seo et al., 2022, Wu et al., 2023], and
value-equivalent world modeling [Schrittwieser et al., 2020], while environments such as Distracting
Control Suite have been developed to assess distractor suppression [Stone et al., 2021].

In this paper we introduce a new method, Policy-Shaped Prediction (PSP), for identifying and focusing
on the important parts of an image-based environment. Rather than relying on pre-imposed structural
regularizations, PSP learns to prioritize information that is important to the policy. We synergize
task-informed gradient-based loss weighting, use of a pre-trained segmentation model [Kirillov
et al., 2023] and adversarial learning to create a distraction-suppressing agent that outperforms
leading image-based MBRL agents. In addition to exhibiting similar performance in distraction-free
settings and on a standard benchmark of robustness to distractions, our method markedly improves
performance in the face of particularly challenging distractors that are intricate but entirely learnable.
Because learnable distractors can be accurately modeled, they straightforwardly contribute to reducing
the world model’s error, but needlessly exhaust the capacity of the world model.
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In sum, we make the following key contributions:

• We describe Policy-Shaped Prediction (PSP), a MBRL method that achieves strong distrac-
tion suppression by combining gradient-based loss weighting with a pretrained segmentation
model to focus learning on important environment features.

• We augment PSP with a biologically-inspired action prediction head that reduces sensitivity
to self-linked distractions.

• We introduce a challenging new benchmark for testing robustness to learnable distractions.
• We demonstrate that PSP achieves 2x improvement in robustness against challenging dis-

tractions while maintaining similar performance in non-distracting settings.

2 Policy-Shaped Prediction

We introduce PSP, a method to reduce an agent’s sensitivity to useless distractions by focusing on
sensory stimuli that are most relevant to its policy, rather than seeking to model everything in the
environment. Our guiding intuition was that we can use the gradient from the policy to the input
image to identify important pixels in the environment, and that we can aggregate these pixelwise
salience signals to identify important objects by using image segmentation. Specifically, we extend
the principles of VaGraM [Voelcker et al., 2022] to a high-dimensional vision model by using
explainability-related notions of salience and aggregating an otherwise noisy gradient-based salience
signal within objects. Additionally, inspired by the biological concept of efference copies [Crapse
and Sommer, 2008], which are neural signals used to cancel out sensory consequences of an animal’s
actions, we incorporated a way to explicitly mitigate distractions caused by actions of the agent itself.

PSP employs (1) gradients of the policy with respect to image inputs to identify task-relevant elements
of the image, (2) a segmentation model to aggregate gradients within each object in the image, and
(3) an adversarial objective to the image encoder of the world model that discourages encoding
of duplicate information about the previous action. Figure 1 illustrates the training modifications
made by this method to the underlying DreamerV3 [Hafner et al., 2023] architecture. Notably, since
these modifications only affect the training stage of the world model, the DreamerV3 agent remains
unaltered during inference. Below, we describe each of the three key components in detail.

Figure 1: Policy-Shaped Prediction in an environment with challenging distractions. (left) Training
of an otherwise-unaltered DreamerV3 agent is modified in two ways: 1) A head is added to predict
the previous action based on the image encoding, and the gradient of the head is subtracted from the
gradient of the image encoder, and 2) the loss is scaled pixelwise by a policy-shaped loss weight.
(right) The loss weight uses the gradient of the policy to the input pixels. The image is segmented,
and the pixel weights are averaged within each segmented object. Dashed lines signify gradient flow.
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2.1 Task-informed image reconstruction with policy-gradient weighting

Our approach builds upon the core idea that signals most important to the actor and/or critic should
be given special importance in the world model. The concept of using the critic to inform model loss
was applied in Value-Gradient weighted Model loss (VaGraM) [Voelcker et al., 2022], which weights
the model loss according to the gradient of the value function with respect to the state. We extend this
concept to high-dimensional image inputs, which previous work did not demonstrate. This extension
to the image domain is inspired by gradient-based interpretability methods such as saliency maps
[Simonyan et al., 2013, Shrikumar et al., 2017, Ancona et al., 2019].

By upweighting the reconstruction loss for parts of the image that inform value estimation, we might
expect to improve the performance of a downstream policy that aims to maximize value. Going one
step further, we propose using the gradient of the policy for weighting the model loss. While VaGraM
focused solely on the value function, we hypothesize that the gradient of the policy may provide an
even more informative signal – because ultimately, the state representation must support effective
action selection. We hypothesize that the set of signals informing action selection may be richer than
those that inform value estimation, which might rely primarily on simple cues such as whether an
agent has flipped over. In contrast, the signals needed to select actions can be more subtle, such as
the distance of an agent’s leg from the platform it pushes off of in order to run.

To compute the policy-gradient weighting, we first sum across the dimensions of the action vector
a = E(π(s)), where s is the latent state of the world model, to produce a scalar a =

∑
j aj , and

then take the gradient with respect to the pixels of the input image x. To apply this weighting in the
context of DreamerV3 [Hafner et al., 2023], we scale the image reconstruction loss term at each pixel
i, for reconstructed image x̂.

Limage(ϕ) =
∑
xi

∂a

∂xi
(x̂i − xi)

2 (1)

2.2 Object-based aggregation of gradient weights

Gradient-based weighting of the world model’s reconstruction ultimately is a form of applying
model explainability methods, which attempt to highlight the most important elements of a model’s
input for its outputs. From model explainability literature, a known challenge with gradient-based
weighting is its noisiness, which is likely caused by the presence of sharp but meaningless fluctuations
in the derivative at small scales [Smilkov et al., 2017]. While this has been combated by more
computationally demanding explainability approaches such as Integrated Gradients [Sundararajan
et al., 2017] and SmoothGrad [Smilkov et al., 2017], we found these to be infeasible to run within
the train loop, since this would require taking the derivative of the function with respect to multiple
varying inputs for every example in the original input batch. Instead, to combat this problem we
introduce a second novel contribution: object-based aggregation of an explainability signal using a
segmentation model (SEG). In principle many models should work, but to ensure we had high quality
segmentations, we used the Segment Anything Model (SAM) [Kirillov et al., 2023], a pre-trained and
broadly applicable segmentation model. Nothing prevents a different model from being utilized, so
long as it is of sufficient quality. This idea follows from the observation that the saliency map tends
to show a broad, if noisy, correlation with relevant regions in the image (e.g. Figure 1). During data
collection, we segment each image into object masks using the existing method laid out by the authors
of SAM. We prompt the model with a grid of 256 points, filter the resulting masks with metrics for
the SAM algorithm (Intersection-Over-Union and a "stability score"), followed by non-maximum
suppression. We also include a mask to capture pixels that are not otherwise assigned to an object.
Then, instead of weighting the image reconstruction loss with the raw gradient-based salience, we
use a salience score that is aggregated within each segmentation mask. The weight of a pixel xi that
has been assigned to segment SEG(xi) is the mean absolute value weight of the pixels in SEG(xi).

Wi =
1

||SEG(xi)||
∑

j∈SEG(xi)

|∂a/∂xj | (2)
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To ignore any exploding gradients, we clip the raw salience map to the 99th percentile before
aggregation. Gradients are sometimes near zero in the beginning of training, and in the rare case that
all gradients are zero, we set Wi = 1 for all i, As a regularizer, we linearly interpolate between the
salience weighting and a uniform weighting, with α = 0.9 for all our experiments, and using rescaled
W ′

i = width · height ·Wi/
∑

i Wi to match the scale of the uniform background.

W ′′
i = αW ′

i + (1− α) (3)
This regularizer lets the world model maintain reasonable reconstruction of less-salient aspects
of the environment, which the actor-critic function can use as it learns. Without some degree of
reconstruction of less-salient regions, the model can become trapped in local minima with a bad policy
and world model. Also, at the start of training, gradients from actor-critic functions are essentially
random and often small. A uniform background offers a reasonable prior to begin the train loop.

2.3 Adversarial action prediction head

We additionally sought to explicitly reduce the distracting sensory impact of an agent’s own actions.
As animals move, they experience sensory signals generated by their actions and the external
environment, and they have evolved the ability to distinguish these signals using efference copies
[Crapse and Sommer, 2008]. We hypothesized that we could separate information about an agent’s
actions and its encoding of external stimuli through domain-adversarial training [Ganin et al., 2016].
To this end, we introduce an adversarial action prediction head that prevents the model from wasting
capacity on irrelevant stimuli that are created by the agent’s own actions.

The DreamerV3 world model consists of three main components: a convolutional neural network
(CNN) image encoder zt ∼ qϕ(zt|ht, et) with et = CNNρ(xt), which processes the input image,
serves as a prior during training, and encodes the environment state during inference; a recurrent
state space machine (RSSM) consisting of ht = fϕ(ht−1, zt−1, at−1) and ẑt ∼ pϕ(ẑt|ht) that
is trained to simulate the progression of latent states given actions; and an image decoder, x̂t ∼
pϕ(x̂t|ht, zt) which reconstructs the image from the latent state. Problematically, the encoder can
capture information about previous actions from the image, despite this information already being
provided directly to the RSSM through the action input. In other words, zt may source information
about at−1 directly through xt, despite at−1 being an argument to fϕ during the computation of
ht. Unfortunately, our reconstruction loss weighting may not solve this problem, since during
backpropagation from the actor-critic functions, we do not distinguish information about previous
actions that comes from the image versus the action input to the RSSM.

To prevent the CNN encoder from wasting capacity on encoding duplicate information about an
agent’s actions, we add a small multilayer perceptron (MLP) head that is optimized to predict the
previous action from the image embedding.

ât−1 = MLPω(stop_grad(CNNρ(xt))) (4)

LAdvHead(ât−1, at−1) = (ât−1 − at−1)
2 (5)

When updating θ during world model training, we subtract the scaled gradient ϵ · ∇θL(ât−1, at−1)
from the overall world model gradient, with ϵ = 1e3. This forces the latent state’s previous action
information to come solely from the provided action vector.

Our training procedure for a DreamerV3 agent is shown in Algorithm 1. We note that it should be
possible to apply these concepts of gradient-based weighting, segmentation-based aggregation, and
adversarial action prediction to world models other than our chosen DreamerV3 architecture.

3 Experiments

To evaluate the model’s performance we design our experiments around the following questions:

Q1. Is our agent robust against distractors which are learnable by the world model, but of no
utility for the actor-critic?

Q2. What aspects of the environment are assigned importance by our method?
Q3. Is our agent robust against distractors that are unrelated to the agent’s actions?
Q4. Does our agent maintain performance in standard, lower-distraction environments?
Q5. What are the contributions of each component of our method?
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Algorithm 1 Policy-Shaped Prediction training (for DreamerV3)
1: Input: World model parameterized by ϕ, policy π paramaterized by θ, image encoder

parametrized by ρ, replay buffer with image transitions (xt−1, at−1, xt, rt, ct), SEG segmentation
model (SAM, in our application), action prediction MLP parameterized by ω

2: for training iteration 1, 2, . . . do
3: Sample batch of transition sequences
4: G = ∇xπθ # Gradient of policy with respect to input image pixels
5: S = SEG(x) # Segmentation of input image
6: W = agg(G,S) # Aggregate gradient using segmentation
7: W ′

i = width · height ·Wi/
∑

i Wi # Normalize weighting
8: W ′′ = αW ′ + (1− α)1shape(W

′) # Linearly interpolate with uniform weighting
9: Lpred(ϕ) = − ln pϕ(xt | zt, ht)⊙W ′′ − ln pϕ(rt | zt, ht)− ln pϕ(ct | zt, ht)

# Weighted DreamerV3 prediction loss
10: L(ϕ) = Eqϕ

[∑T
t=1 (βpredLpred(ϕ) + βdynLdyn(ϕ) + βrepLrep(ϕ))

]
# DreamerV3 model loss

11: ât−1 = MLPω(stop_grad(CNNρ(xt))) # Adversarial action prediction head
12: ϕ← Adam(∇L− ϵ ∗ ∂L(ât−1, at−1)/∂ρ, ϕ)
13: LAdvHead(ât−1, at−1) = (ât−1 − at−1)

2

14: ω ← Adam(∇LAdvHead, ω)
15: end for

3.1 Experimental details

Baselines We test four Model-Based RL approaches as baselines: DreamerV3 [Hafner et al., 2023],
and three methods specifically designed to handle distractions – Task Informed Abstractions [Fu et al.,
2021], Denoised MDP (method in their Figure 2b) [Wang et al., 2022], and DreamerPro [Deng et al.,
2022]. Additionally, we choose DrQv2 [Yarats et al., 2021a] as a representative baseline Model-Free
approach. For all agents, we use 3 random seeds per task, and default hyperparameters.

Environment details Visual observations are 64 × 64 × 3 pixel renderings. We test performance in
three environments: DeepMind Control Suite (DMC) [Tassa et al., 2018], Reafferent DMC (described
below), and Distracting Control Suite [Stone et al., 2021] (with background video initialized to a
random frame each episode, 2,000 grayscale frames from the "driving car" Kinetics dataset [Kay
et al., 2017]). For each environment, we test two tasks: Cheetah Run and Hopper Stand. We
selected these tasks because they present different levels of difficulty, allowing us to assess how
distraction-sensitivity depends on task difficulty. For ablation experiments, we test on Cheetah Run.

3.2 Reafferent Deepmind Control Suite

Figure 2: Schematic of the Reafferent Deepmind
Control environment. The distracting background
is entirely predictable based on the agent’s previous
action and the elapsed time in the episode.

In the natural world, distractions can be highly
complex, but in many cases are also highly pre-
dictable. For instance, the creaking sound a rusty
bicycle makes as you pedal, or the movement
of your own shadow as you dance outside. We
wanted an environment which would allow in-
vestigation of how well existing methods would
perform in scenarios where the representational
complexity of the distractions are very high, but
they cannot simply be ignored as ‘unlearnable’
noise. Distinguishing this type of partly self-
generated distraction requires identifying which
parts of the world are relevant to taking action,
not just those affected and unaffected by our ac-
tion. To achieve this, we devised the Reafferent
Deepmind Control environment, in which the
distracting background images have substantial
content, but they depend deterministically on
the agent’s previous action and the elapsed time in the episode – and are thus completely predictable
(Figure 2). We build on the Distracting Control Suite [Stone et al., 2021], using a background
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Figure 3: Training curve comparisons on Reafferent Deepmind Control. Mean ± std. err.

consisting of 2,500 16 x 16 grids, with each grid cell filled by a randomly chosen color. We then
map a tuple of time (625 possible values) and a discretized version of the first action dimension (4
possible values) to an assigned background. We devised this to be analogous to the types of high
complexity self-generated distractors found in the natural world (e.g. one’s shadow).

This environment allows us to stress test the structural regularizations (and associated priors) that form
the foundation of many existing distraction-avoidance methods. Many methods encode assumptions
about the forms distractors will take (usually uncorrelated to agent actions, reward, or both), rather
than a means of generally identifying and ignoring distractors. We hypothesize that a learning-based
approach, in which we avoid distraction by learning what is actually important for the agent to get
things done, has the potential to overcome even learnable-but-not-useful distractions.

Figure 4: Reconstructed image comparison, PSP
vs. DreamerV3 on Reafferent Cheetah Run, same
episode and time point. True, reconstructed, differ-
ence (true - recon.). DreamerV3 accurately repro-
duces the background but not the cheetah.

We find that none of the baseline MBRL meth-
ods perform well on the Reafferent Environment,
relative to their published results on the Distract-
ing Control Suite or their performance on the
unmodified Deepmind Control Suite (Table 1,
Figure 3). We find that the world models learn
excellent reproductions of the distracting back-
ground. However, the cost of this is that the
reconstruction of the agent becomes less well-
defined or even replaced by the background, es-
pecially in positions where the outcome of a
movement is uncertain (see Figure 4 and A1
for examples with DreamerV3 and A2 with De-
noised MDPs). This matches our expectation
that the model will waste capacity on trivially
predictable dynamics, rather than on the much
more important but uncertain agent dynamics.
As expected, unlearnable distractions are less
challenging (Figure A3).

Figure 5: Example
salience maps (policy-
shaped loss weights)
highlight the agent.

Notably, the model-free DrQv2 agent shows a reduction in performance
from its previous performance on the unmodified environment, but overall
demonstrates quite robust performance (Table 1). This also matches our
expectations, since the CNN encoder is learned as part of the policy
in model-free learning, unlike with model-based, where the learning
objective for the world model is separate from the learning objective for
the policy.

Our new method demonstrates a substantial improvement over the existing
baselines (Table 1, Figure 3). Although it shows a higher than desired
level of variance between runs, especially on the more challenging Hopper
Stand task, it nevertheless achieves scores beyond the reach of any of the
baselines. We believe this affirmatively answers Q1 by showing our new
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Figure 6: Training curve comparison on Distracting Control. Mean ± std. err.

agent is in fact robust to challenging distractors. Addressing Q2, we also find that the salience maps,
derived from the gradient of the policy and used to weight the world model loss, highlight the regions
of the image that we would expect (Figures 5 and A4). Interestingly, we see that sometimes the
cheetah’s rear leg is highlighted when it is the only leg close to the ground, though in other instances
the entire cheetah is highlighted (Figure A4).

3.3 Performance on unaltered DMC and Distracting Control Suite

On Distracting Control tasks, in which the background distractor is uncoupled from the agent’s
actions, PSP produced consistently improved performance relative to baseline DreamerV3, in contrast
to the more variable performance of DreamerPro, TIA, and Denoised MDP (Table 1, Figure 6). This
addresses Q3.

Importantly, PSP also shows comparable performance to other methods (including DreamerV3) on
the unaltered Deepmind Control Suite, demonstrating that we have not introduced a tradeoff between
performance on distracting and non-distracting environments (Table 1, Figure A5), resolving Q4.

In sum, PSP exhibits similar performance to baseline methods in commonly used tests of distractor-
suppression and in non-distracting environments, while also demonstrating unmatched performance
on particularly challenging distractors that are complex but learnable.

3.4 Ablation study

To understand the contributions of each sub-component of the method (i.e. address Q5), we conduct
ablations on the reafferent and unaltered Cheetah Run (Table 2). We find that some ablations trade off
performance between the environments, while our complete model has good performance on both.

For instance, the top-performing method on the reafferent environment does not incorporate the
segmentation or adversarial components, and uses the value gradient rather than the policy gradient.
However, the variance of its scores is higher than any other approach, and more problematically, it
shows the worst performance of all experiments in the unaltered environment. We believe this occurs

Table 1: Performance comparison across environments. DrQv2 is model-free, all others are model-
based. TIA is task-informed abstraction, dMDP is denoised MDP, mean ± standard deviation.

Task DrQv2 DreamerV3 DreamerPro TIA dMDP PSP

Reafferent Control

Cheetah Run 565.1 ± 35.5 158.4 ± 45.7 39.7 ± 9.0 200.4 ± 203.9 6.7 ± 4.3 383.1 ± 23.8
Hopper Stand 210.3 ± 353.8 4.6 ± 3.9 3.8 ± 1.0 0.9 ± 0.3 1.7 ± 2.5 128.5 ± 215.7

Unmodified Deepmind Control

Cheetah Run 736.0 ± 17.0 521.1 ± 136.3 908.4 ± 1.6 773.7 ± 22.7 763.0 ± 62.8 712.3 ± 32.3
Hopper Stand 752.9 ± 206.8 867.4 ± 15.9 890 ± 11.2 298.4 ± 512 897.9 ± 14.2 865.6 ± 53.6

Distracting Deepmind Control

Cheetah Run 364.4 ± 60.7 243.8 ± 81.2 179.1 ± 24 548.5 ± 238.9 397.4 ± 111.8 408.6 ± 125.1
Hopper Stand 781.1 ± 110.3 173.7 ± 160.9 561.8 ± 103.1 200.5 ± 171.7 13.2 ± 16.5 417.7 ± 118.9
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Table 2: Performance of ablated versions of PSP. Scores are shown for Cheetah Run in unaltered
and reafferent Deepmind Control environments. The unablated PSP achieves good performance on
both environments, and while some ablations achieve slightly better scores on either unaltered or
reafferent, they trade off performance in the other environment.

Gradient
weighting

Gradient weighting
with segmentation

Adversarial
Action Head Unaltered Reafferent

Policy ✓ ✓ 712.3 ± 32.3 383.1 ± 23.8
Policy ✓ ✗ 653.9 ± 44.2 231.2 ± 58.6
Policy ✗ ✓ 742.1 ± 79.7 188.4 ± 9.4
None ✗ ✓ 674.2 ± 50.7 324.4 ± 2.3
Policy ✗ ✗ 418.2 ± 53.1 379.0 ± 46.8
Value ✗ ✗ 381.7 ± 64.9 445.7 ± 126.9
None ✗ ✗ 521.1 ± 136.3 158.4 ± 45.7

because of the flaws in using only the gradient as an explanation for pixels that explain the actor-critic
output. These flaws are more evident in an environment where the background never changes, as
the policy is not required to learn any robustness to shifts in the background. In other words, the
gradient for changes in the static background may be quite large, since the model is immediately out
of domain when the background changes. We find that segmentation-based aggregation is critical to
improving our model’s performance amid distractors, while also maintaining its performance in the
non-adversarial baseline. Overall, the results of the ablations confirm that combining segmentation,
policy gradient sensory weighting, and adversarial action prediction results in the best scores across
the unaltered and reafferent environments.

We also investigated the importance of the weight interpolation (Equation 3). We find that interpo-
lation produces the expected benefit of allowing the agent to construct a useful world model, even
when the policy is not very good, and thus sidestepping the ‘chicken-and-egg’ problem where the
agent has neither a good policy nor a good world model (Figure A6). Furthermore, we tested the
ability of PSP to adapt to either a task change (Figure A7) or a change in the distractor (Figure A8),
and we found that PSP was able to quickly adapt in both scenarios.

3.5 Additional segmentation models

Table 3: Performance comparison of different segmen-
tation models. SAM2 is the tiny model size of the new,
faster Segment Anything model. SAM2-tiny performs
similarly on Cheetah Run, but is worse on the more chal-
lenging Hopper Stand. SAM2-large recovers some of the
decreased performance on distracting variants of Hopper.
The full training plots are included in A10 and A11.

Task SAM SAM2 (tiny) SAM2 (large)

Reafferent Control

Cheetah Run 383.1 ± 23.8 398.7 ± 70.5 -
Hopper Stand 130.3 ± 214.1 29.4 ± 45.3 41.4 ± 74.4

Unmodified Deepmind Control

Cheetah Run 712.3 ± 32.3 696.3 ± 20.0 -
Hopper Stand 865.6 ± 53.6 891.2 ± 39.6 -

Distracting Deepmind Control

Cheetah Run 364.4 ± 60.7 352.0 ± 60.4 -
Hopper Stand 417.7 ± 118.9 187.4 ± 172.0 465.0 ± 166.6

We additionally tested the sensitivity of
PSP to the segmentation model. Given
that segmentation models are likely to
continue improving over time, we won-
dered 1) whether PSP could be compati-
ble with other models besides SAM, and
2) how PSP performance might be mod-
ulated by the performance of the segmen-
tation model. To investigate, we used
the recently released SAM2 [Ravi et al.,
2024], which has multiple model sizes
that allow for trading off performance for
segmentation speed, with as high as 6x
faster segmentation speeds than the orig-
inal SAM. We updated PSP to use the
‘tiny’ SAM2 model, the smallest and low-
est accuracy of the provided model sizes.
Our basic implementation with SAM2-
tiny immediately improved segmentation
speeds (and thus reduced the resources necessary for segmentation) by 2x. We found that PSP
with SAM2-tiny yielded nearly identical performance as the original PSP with SAM on all three
Cheetah environments (Table 3). On Hopper, a substantially harder task, we observed increased
sensitivity to the quality of the segmentation. PSP with SAM2-tiny performed the same as PSP
with SAM in the unmodified environment. In the Reafferent environment, PSP with SAM2-tiny still
outperformed all baselines, with one of three runs yielding a successful policy (compared with zero
out of twelve total runs across all baselines), though the successful run yielded a lower score (81.7)
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than the successful run with SAM (377.5), which was also one of three runs. Additionally, SAM2-tiny
yielded significantly worse performance on Hopper in Distracting Control. We hypothesized that
this environment is particularly challenging for segmentation because the distracting background is a
black and white video, which is difficult to discern from the platform. SAM2-tiny is less successful
at segmenting the platform, which is problematic for learning a good policy. We further hypothesized
that this issue would be resolved by improving the performance of the segmentation model. We tested
this by using the SAM2-large model, and found that indeed this recovered performance back to the
level of the original SAM, yielding a score of 465± 166.6. We additionally tested SAM2-large on
Reafferent Control Hopper and observed a similar pattern with, again, one out of three runs yielding
a successful policy with a score (114.4) that improved on SAM2-tiny. Optimizations, including
using SAM2’s video segmentation capabilities and better utilization of the GPU, would likely further
improve segmentation speed. These results also suggest that as long as the segmentation is ‘good
enough’ to properly segment the environment, PSP is not very sensitive to the segmentation algorithm.
We also note that objects can be over-segmented into multiple segments without causing problems
(Figure A9), and thus adequate segmentation is not a particularly stringent requirement.

4 Related Work

Distraction-sensitivity of model-based RL Recent advances in Model Based RL (MBRL) includ-
ing World Models [Ha and Schmidhuber, 2018], SimPLe [Kaiser et al., 2019], MuZero [Schrittwieser
et al., 2020], EfficientZero [Ye et al., 2021], DreamerV1 [Hafner et al., 2019], DreamerV2 [Hafner
et al., 2020], and most recently DreamerV3 [Hafner et al., 2023] have surpassed model-free RL in
settings such as Atari, Minecraft, and Deepmind Control Suite. One deficiency of current MBRL
algorithms is a susceptibility of the world model to become overwhelmed by easily predictable
distractors, in part due to mismatch between the objectives of the policy (maximizing reward) and the
world model (accurately predicting future states) [Lambert et al., 2020].

One line of work attempts to address the distractability of MBRL through structural regularizations.
Deng et al. [2022] uses contrastive learning of prototypes instead of image reconstruction. Lamb
et al. [2022] introduces the Agent Control-Endogenous State Discovery algorithm, which discards
information not relevant to elements of the environment within the agent’s control. Task Informed
Abstractions (TIA) identifies task-relevant and task-irrelevant features via an adversarial loss on
reward-relevant information [Fu et al., 2021]. Denoised MDPs extends TIA’s factorization to include
notions of controllability [Wang et al., 2022]. Clavera et al. [2018] use meta-learning and an ensemble
of dynamics models. These works form a strong body of solutions, given prior knowledge of likely
distractors, but they can struggle if a distractor does not fall into the designed regularizations.

A different approach instead learns what is important by using the actor-critic functions to scale the
importance of various learned dynamics. VaGraM uses value gradients to reweight state reconstruction
loss [Voelcker et al., 2022], building on Lambert et al. [2020] and IterVAML [Farahmand, 2018],
but VaGram does not operate on visual tasks. Eysenbach et al. [2022] propose a single objective
for jointly training the model and policy. Goal-Aware Prediction learns a joint representation of the
dynamics and a goal, by predicting a goal-state residual, although they describe this approach as likely
still susceptible to distractions [Nair et al., 2020]. Seo et al. [2023] decouples visual representations
and dynamics via an autoencoder, improving the performance of Dreamer on tasks involving small
objects. Value-equivalent agents [Grimm et al., 2020], such as MuZero [Schrittwieser et al., 2020]
or Value Prediction Networks [Oh et al., 2017], construct a world model that only aims to represent
dynamics relevant to predicting the value function, in contrast to methods such as Dreamer that
aim to learn the broader dynamics of the environment. MuZero is very effective in settings with
discrete actions such as Atari, Go, and chess. Adaptation to domains with complex action spaces
such as Deepmind Control Suite [Hubert et al., 2021] have shown some success, however Dreamer-
based agents that include image reconstruction for world model learning can still exhibit superior
performance, and the image-related signals have been shown to be essential to their performance
[Hafner et al., 2020]. Building on these methods, our work investigates how to combine the benefits
of both image reconstruction and task-aware modeling, through policy-shaped image-based world
modeling, by applying concepts from VaGraM to the image-based MBRL setting.

Distraction-sensitivity of model-free RL A parallel track of Model Free RL (MFRL) has its
own body of literature, with a leading method DrQv2 [Yarats et al., 2021a] used in this paper
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for comparison. DrQv2 is an off-policy actor-critic RL algorithm that operates directly on image
observations, using DDPG as the base RL algorithm alongside random shift image augmentation for
image generalization and sample efficiency. Although our work focuses on a solution to MBRL’s
distraction-sensitivity, it is worth noting analogous deficiencies can exist in MFRL and there are a
number of works addressing these. For instance, Mott et al. [2019] uses an attention mechanism to
make the agent robust to environment changes, and Tomar et al. [2024] learn task-relevant inputs
mask. Yarats et al. [2021b], an inspiration for DreamerPro, creates prototypes that compress the
sensory data, Grooten et al. [2023a] apply dynamic sparse training to the input layer of the actor and
critic networks, and Grooten et al. [2023b] mask out non-salient pixels based on critic gradients.

5 Discussion

PSP combines three ideas to focus the capacity of an agent’s world model on aspects of the environ-
ment that are useful to its policy. First, the gradient of the policy with respect to the input image
is used to identify pixels that influence the policy. Second, the importance of individual pixels are
aggregated by object, using a segmentation model to identify objects. Third, wasteful encoding of
the preceding action (which is known and does not need to be predicted) in the image embedding is
removed using an adversarial prediction head. Together, these allow an agent to construct a world
model that best informs its policy, and in doing so, use the policy to shape what information is
prioritized by its world model. The outcome of this process is an agent that is selective about what
parts of the world it models, and that becomes resilient against enticingly learnable, but ultimately
empty, distractions.

Our work draws a connection between the use of the value function gradient in VaGraM and related
concepts from the vision model explainability literature. The value gradient can be seen as analogous
to saliency maps [Simonyan et al., 2013]. Other gradient-based attribution methods, such as those
that multiply saliency maps by input intensities [Shrikumar et al., 2017] or Integrated Gradients
[Sundararajan et al., 2017, Ancona et al., 2019] offer additional ways to perform attribution. Some
gradient-based attribution methods, such as Integrated Gradients, can be computationally expensive
due to the need to approximate an integral over the input space. Future work may investigate
incorporation of more advanced explainability methods such as these into PSP, and the concept
of an agent ‘interpreting itself’ may exhibit broader utility. Finally, recent work that uses SAM
combined with human supervision to improve the generalizability of model-free RL [Wang et al.,
2023], together with our work, point towards the potential value of incorporating powerful object
segmentation models into reinforcement learning systems.

Limitations Limitations of PSP include its fundamentally object-centric view, which assumes that
pixels belong to single objects, and that the objects can be ranked by their importance. Additionally,
the SAM segmentation model requires significant compute, but these models will likely improve over
time and can also be application-tailored. Notably, however, segmentation is not necessary during
inference of the world model and policy, only training. Finally, it is not yet clear how well PSP
will adapt in environments where the reward structure or salient features change across time. PSP
may make the world model more task-specific than other approaches, although it does keep some
reconstruction weight on non-task-relevant features and we observed initial evidence of resiliency
(Figures A7, A8).

Outlook Our work finds headroom to improve the robustness of MBRL to distractions by linking
the actor-critic functions and the reconstruction loss and leveraging useful priors from pre-trained
foundation models. The findings here open other lines of inquiry such as using better model
explanation techniques or more explainable architectures, utilizing faster segmentation models, and
utilizing segmentation models designed for videos, in order to do temporal aggregation. Substantial
work likely remains to improve the speed of this technique and find extensions that allow it to
reliably work for harder problems, such as applied robotics. The adversarial action prediction head’s
inspiration from the biological concept of efference copies also suggests there is still space in MBRL
to consider biological metaphors as helpful design principles for learning algorithms. In sum, we
present PSP, a method for avoiding distractors by focusing the world model on the parts of the
environment that are important for selecting actions.
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Figure A1: Reconstructed image comparison, PSP vs. DreamerV3 on Reafferent Cheetah Run. This
highlights how PSP focuses on modeling the hind leg (white arrow), while DreamerV3 focuses on
modeling the background but fails to model the hind leg. From left: True, reconstructed, difference
(true - recon.), PSP salience loss weight.

Figure A2: Denoised MDP reconstructs the background with a high degree of fidelity, but does not
clearly render the Cheetah agent.

Figure A3: To more thoroughly show that the reafferent environment impacts DreamerV3 because of
the learnable time & action mapping to backgrounds (and not purely because of the presence of the
backgrounds themselves), we include this training curve from an environment which uses the same
backgrounds, but with a random choice of background at each timestep. This demonstrates effective
policy learning in spite of the distracting (but unlearnable) background.

A Broader Impacts

At the current stage, this work remains reasonably far from any large societal impacts, as it is limited
to agents interacting with small, simulated environments. Over the long term, however, if model-based
RL algorithms are used to control robots or internet-connected agents (such as large language model
agents), the potential for both large positive and negative societal impacts becomes relevant. On the
positive side, intelligent agents that are capable of modeling the world and avoiding distractors have
the potential to aid humans in a wide variety of scenarios, from housework, to medical applications,
to exploration, to internet research. On the negative side, agents without proper safeguards have the
potential to inflict harm on humans and the environment, whether through negligence or malfeasance.
Ultimately, our work is targeted at producing the positive impacts, while still allowing for mitigation
of the negative impacts.
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Figure A4: Improvement in specificity of the salience map across training.

Figure A5: Training curve comparison on unmodified Deepmind Control. Mean ± std. err., n=3 runs.

Figure A6: Interpolation of the gradient based reconstruction loss and a uniform reconstruction loss
yields superior performance to a gradient based reconstruction loss without interpolation, which
manifests as a faster initial rise in score with PSP. Interpolation allows the agent to construct a useful
world model even when the policy is not yet very good (and hence minimizes the impact of the
‘chicken-and-egg’ problem where the agent has neither a good policy nor a good world model). Mean
± std. err., n=3 runs.
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Figure A7: In order to test the adaptability of a model trained for one task via PSP to another task
for the same agent, we switched from Walker Run to Walker Stand at step 1M, while leaving the
Reafferent background unchanged. We see that the learned model can quickly adapt to the new task,
even with the Reafferent background. Mean ± std. err., n=3 runs.

Figure A8: In order to test the adaptability of a PSP model to a dynamic distraction, we switched the
settings of the Reafferent distraction at step 1M. We see that the learned model can quickly adapt to
the new distraction. Mean ± std. err., n=2 runs.

Figure A9: How high quality must the segmentation be? We note while training that SAM did
not have perfect segmentation performance on our tasks. In fact, the Cheetah agent was usually
segmented into several (and a varying number of) different regions. The algorithm proves robust
across these segmentation variations.
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Figure A10: Training curve comparisons on Reafferent Deepmind Control. Mean ± std. err. of PSP
with different segmentation algorithms: SAM, SAM 2 Tiny, and SAM 2 Large. All baselines are
shown in Figure 3. Notably, all three PSP agents shown here achieve non-zero scores on Hopper
Stand, in contrast to the baselines.

Figure A11: Training curve comparisons on Distracting Control Suite. Mean ± std. err. of PSP with
different segmentation algorithms: SAM, SAM 2 Tiny, and SAM 2 Large. All baselines are shown in
Figure 6.

B Computational Overhead

We characterize the computational cost of the PSP algorithm by ablating various components and
measuring its training speed (Table A1). There are four major components of PSP that affect
performance. In order of decreasing computational cost: (1) Policy gradient-based weighting, (2)
image segmentation (e.g. with SAM) (3) action adversarial head, and (4) segmentation-based
aggregation of the gradient weighting. These are all costs that apply only during training, not during
inference.

Policy gradient based weighting: For each latent state produced by the encoder RSSM in each
step of a rollout, we take the gradient of the policy with regard to the image pixel inputs. In our
implementation, this auto differentiation yields a complexity ofO((E+R+P ) ·S2 ·W ·H), where
E is the number of encoder parameters, R is the number of parameters of the RSSM, P is the number
of parameters of the policy, S is the number of steps in a rollout, W is the width of the input image,
and H is the image height.

There are a couple of major opportunities for optimization in future implementations. First, for
debugging and experimental reasons, we have been computing the gradient of the policy with
respect to all rollout steps, instead of just the current step. This reveals an opportunity to reduce
the computational burden by a factor of S, where S is 64 in our implementation. Reducing this
contribution could induce a significant speedup in the performance of future implementations. Second,
we take the gradient of the policy with regard to the image during rollouts only to enable visualization
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Table A1: Comparison of computational overhead. FPS stands for frames per second.

Adv Head? SAM? Policy VAML? Interpolation? FPS

Yes Yes Yes Yes 5.0
Yes No Yes Yes 5.9
Yes No No N/A 17.1
No No No N/A 19.0

for debugging and figures. This is strictly speaking unnecessary overhead and could be eliminated for
a gain during training.

Image segmentation: The details of the additional complexity depend on the specific algorithm
used. With our addition of results using the SAM2 tiny model, we now demonstrate the viability of
using different segmentation algorithms. Notably, the segmentation process is entirely parallelizable
separately from the training process: images are segmented as they are collected and stored in the
replay buffer. We find that segmentation is not a bottleneck in training speed. Moreover we find that
advances in segmentation algorithms (e.g. SAM2) reduce the computational resource requirements
for this process.

Adversarial head: For each training step, we take the gradient of the loss of the action prediction
head with regard to the parameters of the encoder. Therefore, the cost is O((E +R+A) · S), where
A is the number of parameters of the action prediction head. These gradients are added with the
regular gradients during a train step, so the adversarial head does not introduce additional iterations
during training.

Segmentation aggregation of gradients: We take the mean value of the gradient with respect to
each mask by multiplying each mask by the gradient weighting and then taking the hadamard product
of the resulting image (matrix) with the inverse of the sum of mask elements equal to 1. This results
in an additional cost of O(M ·W ·H), where M is the number of masks.

C Experiments Compute Resources

Each trial of the PSP method used 4 Nvidia A40 GPUs to train the modified DreamerV3 model, and 4
A40 GPUs to run the Segment Anything model in parallel. Given an estimated 17 unique experiments
for the final paper, 3 trials per experiment with our method, and about 1.5 days per training run, we
used about 17 * 3 * 1.5 * 8 GPUs = 612 GPU days on A40 accelerators. Early experiments with
this methodology likely used an additional 300. Baseline trials could be run on only a single A40
GPU or a desktop NVIDIA 2070 SUPER, usually in less than a day, and accounted for a comparably
negligible level of resources.

We believe this level of resource consumption could be easily reduced. The modifications to the
DreamerV3 model do not attempt to benchmark the most costly components. We suspect our method
of parallelizing the new backpropagation from the policy to the image could be optimized further
from its naive Jax implementation. Additionally, SAM could be supplanted by a more efficient
segmentation model. We focused on establishing the basic technique with SAM, and replacing it with
more efficient methods should be the subject of future work.

D Code

The repository with code and instructions for reproducing these experiments is available at this
GitHub Repository.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state our contributions and claims, and
match the details in the results section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, the paper clearly points out what we believe to be core limitations and
assumptions of our work, as well as present limitations that we do not believe are inherent
to the method.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The claims of this paper are tested empirically.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper itself should include enough detail to reproduce our results with
the open source SAM and Dreamerv3 models. Because the implementation is not trivial,
we will also release the GitHub repository in the camera ready version, which includes an
implementation of the core algorithm for DreamerV3 and a shared implementation of the
test environments for DreamerV3 and every baseline. We have not included it in the review
version as the GitHub will identify the authors.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: An anonymized version of the code will be available at the linked GitHub
Repository for reviewers.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We include all relevant details of our benchmark and (where we diverge from
the default) models.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: All experiments are performed with three trials and std. dev is reported.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have provided a transparent and reasonable estimate of compute require-
ments in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The only new dataset involved in this work was generated by a small Python
procedure and has no privacy risks or ethical concerns. The implemented model modifies an
open source repo and has had no interaction with human subjects.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification:This is foundational work for improving MBRL and any societal impacts are at
least one order removed, but we have outlined the possible societal impacts of improved
MBRL in general.
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Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper describes a foundational change to MBRL and introduces no new
datasets that pose a risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All previous work is cited and no proprietary code has been used beyond what
is allowed by its license.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
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• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Source code will be provided before publication if paper is accepted.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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