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Improved instrumentation for observing the sky mark-
edly transformed our view of the universe. New tools 
enabled the detection of subtle and sparse, or massive 
and universal, interrelated phenomena such as black 
holes and celestial-​body dynamics1,2. In neuroscience, 
we are now experiencing a more rapid but similarly 
fundamental transformation. Over the past century, 
we advanced from the invention of tools for measuring 
electrical activity in single nerve fibres3 and neurons4,5  
to an age when we now use electrical and optical tools to  
routinely obtain simultaneous, high-​speed measure-
ments from thousands of neurons in behaving mam-
mals. But these new methods allow us to do more than 
just sample from larger numbers of neurons in one 
brain region. We are now able to record synchronously 
from large neuronal populations that span multiple 
brain regions — at, or near, single-​cell resolution. This 
multiregion recording capability offers a burgeoning 
opportunity to see both the emergent whole and the 
constituent parts (the forest and the trees) of neural 
computations in a single dataset. Using these reliable 
new neurotechnologies, we are poised to make swift 
progress in understanding how cells in interconnected 
brain areas work together to produce global brain states  
and behaviour.

These advances in large-​scale neural recording tech-
nologies are exciting for the field, but the rapid pace of 
innovation has made it difficult for researchers to learn 
about each new approach that might be relevant for 
their work. No single recording modality is best for all 
applications, and efforts to build ever better tools mean 
that the most viable approach one year might change 
in the next. Depending on the experimental question 

of interest, researchers must make choices, and accept 
trade-​offs, along multiple different axes, such as spatial 
resolution, field of view, temporal resolution and cost. 
Different methods are also differentially compatible 
with optogenetics, freely moving behaviour and molec-
ular phenotyping approaches. Moreover, there are many 
approaches to analysing and deriving insight from the 
resulting datasets, with each analysis method offering 
different perspectives and biases.

Here we summarize advances in multiregion record-
ing and analysis techniques, consider trade-​offs among 
different technical approaches and review key findings 
resulting from application to neural coding and brain-
wide computation. Other recent reviews have focused on 
complementary issues, such as optical methods specifi-
cally6,7, or on conceptual insights that have emerged from 
the analysis of neuronal population recordings of ever 
increasing size8. In contrast, here we specifically focus 
primarily on technology and discoveries relating to large 
multiregion neural datasets, where simultaneous record-
ings were obtained from neuronal populations spanning 
many areas of the brain. We pay particular attention to 
the rodent literature, which has seen the most dramatic 
development in this regard in recent years. However, 
many of the ideas and technologies we discuss are 
either currently or well on their way to being applied to 
non-​human9–11 and human12 primates.

Why do we care about multiregion recording?
Brains are highly interconnected systems, composed of 
networks of neurons that span spatially distant regions. 
Anatomical tracing has identified consistent and diverse 
brainwide connectivity patterns13, with individual or 
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neighbouring neurons receiving input from or sending 
output to multiple regions in parallel (for example, in 
the primary visual cortex14). Research across many dec-
ades identified key behavioural and sensory correlates 
of neuronal activity in particular brain regions, leading 
to the assignment of primary functions to these regions. 
However, until the past few decades, most recording of 
neuronal activity was limited to monitoring a handful 
of neurons in one region at a time — a situation that 
has changed dramatically with the development and 
application of new methods15–17. Because of the inter-
connectivity and nonlinearity of neural circuits, it is not 
guaranteed that the conclusions reached by observing a 
few neurons in one region will also apply to data taken 
from neurons across many regions. Thus, many ques-
tions have persisted, and others have newly emerged, 
about the extent to which individual brain regions 
perform individual functions, whether specific compu-
tations are local or distributed, and whether brain states 
and representations are broadcast or confined.

As researchers began to obtain population record-
ing data from multiple brain regions simultaneously, 
behaviourally relevant neuronal codes were found 
to be distributed across the brain18–20. For example, 
motor actions were found to modulate neural activity 
in many non-​motor areas — including in the sensory 
cortex21–24. Overall, an intriguing picture of planning and 
outcome processing is beginning to emerge, in which 
neural computations are distributed, information is 
distributed or both. Local computations appear to be 
important, but also should perhaps not be analysed in 
isolation. We now must investigate why representations 
of sensation, cognition and action are so widespread, 
and what role they play in guiding behaviour20. In the 
past decade, much work has shifted from a focus on 
the computational properties of single neurons to a 
population doctrine that is focused on the computa-
tions performed by groups of neurons from a given brain 
region25. In an analogous fashion, as population record-
ing methods continue to scale up from single to multi-
ple regions, perhaps a comparable shift in perspective 
will emerge from the study of multiregion population 
dynamics.

A common taxonomy of brain regions
To synthesize findings about multiregion neural dynam-
ics across studies, a common taxonomy of brain regions 
(or areas; here either word is used interchangeably) is 
required. Over the past few decades, a small number of 
rodent brain atlases have become widely adopted26–28. 
Until recently, atlas borders between areas were pri-
marily delineated on the basis of cytoarchitectural 
differences (that is, clear differences in the particular 
arrangement and density of neurons between regions). 
More recently, a wealth of additional information has 
become available to enumerate and delineate brain 
regions, including viral-​based connectivity13,29 and gene 
expression patterns30,31. These disparate data streams 
have been combined into an updated 3D atlas: the Allen 
Mouse Brain Common Coordinate Framework version 3  
(CCFv3)32. For electrophysiology data, either 2D sec-
tions or 3D volumes can be obtained post hoc from fixed 

experimental brains so as to reconstruct the trajectories 
of dye tracks left behind by recording electrodes18,33,34, 
unstained tracks visible from larger probes35,36 or tissue 
damage left by electrolytic lesions37,38. For optical data, 
alignment can be achieved using known anatomical or 
functional landmarks23,39. As a whole, it is encouraging 
to see that increasingly more rodent studies are aligning 
their functional brain data to a common reference atlas; 
this trend is likely to continue along with greater data 
sharing between research groups. The use of a stand-
ard anatomical framework such as CCFv3 may also 
permit the development of searchable databases that 
use atlas-​registered physiology data to generate sum-
mary statistics and perform meta-​analyses across thou-
sands of published articles — as has been done for the 
human neuroimaging community with tools such as 
NeuroQuery and Neurosynth40,41.

Recording techniques
Three main technical approaches are currently used 
to record multiregion neuronal activity: one-​photon 
fluorescence imaging, multiphoton fluorescence 
imaging and electrophysiology. Optical techniques ena-
ble cell type-​specific recording by leveraging genetically 
encoded fluorescent activity indicators such as Ca2+ or 
voltage sensors; cell types are commonly targeted on 
the basis of genetic expression profiles or by cellular 
connectivity42–44 or assigned on the basis of post hoc 
registration to cell type-​specific labelling45–47. Some 
intact-​skull optical techniques also have the potential to 
be minimally invasive and require no craniotomy — if 
used in tandem with transgenic animals or intravenous 
gene transfer to drive sensor expression48,49.

Electrophysiology, on the other hand, offers direct 
recording of cellular action potentials, at sub-​millisecond 
temporal resolution. This high sampling rate is neces-
sary for resolving the shape and timing of individual 
action potential waveforms. Additionally, electrophys-
iology is label-​free, and therefore does not require 
any genetic manipulation of the animal, but also does 
not readily allow detailed anatomical or molecular 
understanding of the recorded cells. While it is pos-
sible, in some situations, to pair electrophysiology 
with optogenetics to identify specific types of neurons 
(‘optical tagging’)36,50–53, this approach is of low through-
put relative to two-​photon imaging, which permits 
exhaustive characterization of a genetically defined cell 
type in a local area. Another limitation of extracellular 
electrophysiology is that, despite recent progress54–57, 
it remains difficult to track recorded single neurons 
across multiple days with electrophysiology, in contrast 
to optical methods with genetically encoded fluores-
cent indicators, where such an approach is relatively 
straightforward. However, unlike with most optical 
imaging approaches that require head fixation, or are 
limited by the potential photobleaching of a fluorescent 
sensor, it is possible to obtain continuous electrophysi-
ological recordings for many days57. In this section, we 
summarize the current state of diverse brainwide record-
ing methods and discuss their strengths and weak-
nesses for studying multiregion neural computation  
(Fig. 1 and Table 1).
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Fig. 1 | A spectrum of methods for multiregion recording. a | Each multiregion recording method exhibits a set of 
trade-​offs among spatial resolution (x-​axis; ranging from regional-​scale resolution to single-​cell resolution), spatial 
coverage of a simultaneous recording (y-​axis; ranging from just one region to the entire brain) and acquisition speed 
shading. b | As a consequence of the trade-​offs illustrated in part a, the spatial and temporal features of the data diverge 
between different methods. Synthetic data, simulated on the basis of the characteristics of each method, qualitatively 
illustrate the kinds of data that are produced by different multiregion recording methods — ranging from sparse sampling 
of neurons around an electrode array (left panel, top) with high-​fidelity single-​neuron recordings (left panel, bottom), to 
complete coverage of dorsal cortex (right panel, top) without full cellular resolution (right panel, bottom). Scales on the 
synthetic neural activity traces are arbitrary. COSMOS, cortical observation by synchronous multifocal optical sampling; 
OEG, optoencephalography.

NATure RevIeWS | NEurOSCiEnCE

R e v i e w s

	  volume 23 | November 2022 | 685



0123456789();: 

One-​photon fluorescence
Regional-​scale widefield imaging of the cortex. One-​
photon optical fluorescence techniques use short-​
wavelength (for example, blue) excitation light to elicit 
fluorescence of a longer wavelength (for example, green). 
This process is efficient and enables illumination and imag-
ing of an entire field of view, yielding fast recording speeds 
that can take advantage of modern scientific CMOS image 
sensors; these sensors can have acquisition rates of hun-
dreds of frames per second with low read noise (less than 
one electron) and extremely high sensitivity (quantum 

efficiencies greater than 0.9). One-​photon fluorescence 
is also relatively robust to illumination alignment and  
detection parameters, and such techniques are therefore 
easier and cheaper to implement than alternatives such as 
two-​photon techniques — especially over large fields of 
view. The primary drawback of one-​photon illumination 
is that any fluorophore in the specimen can fluoresce if 
it absorbs an excitation photon. This effect can lead to 
out-​of-​focus background fluorescence that adds noise  
to the signal measured at the focal plane (originating from 
fluorescent molecules in the surrounding tissue).

Table 1 | Multiregion recording techniques present distinct trade-​offs

Method Acquisition 
speed

Spatial 
resolution

Spatial 
coverage

Cost and complexity Genetic 
specificity

Freely 
moving

Example 
refs.

Multiple Neuropixels 
probes

More than 
kilohertz

Single cell Select regions 
throughout the 
brain, along 
multiple linear 
trajectories

Specialized mount, 
multiple fragile 
probes (each ~$1,000), 
acquisition hardware 
(<$50,000), relatively 
simple burr-​hole 
craniotomy surgery

Possible with 
optotagging

Up to two 
probes 
currently, 
probably 
more possible

22,180,224

Two-​photon 
mesoscope

<10 Hz Single cell A few adjacent 
cortical regions 
(~5-​mm diameter)

Custom large microscope 
objective, high speed 
optomechanics and 
detectors, lasers, large 
optical table, more than 
hundreds of thousands 
of dollars, commercial 
system available, large 
glass window surgery

Yes, with viral 
or transgenic 
reporter 
expression

Not currently 138,139, 

142,143

Multi-​objective two 
photon imaging

>10 Hz Single cell A few select 
regions in 
the cortex, or 
accessible with  
a GRIN lens

Custom optics and 
optomechanics, lasers, 
large optical table, 
more than hundreds of 
thousands of dollars, 
multiple glass window  
or GRIN-​lens surgery

Yes, with viral 
or transgenic 
reporter 
expression

Not currently 136

COSMOS >10 Hz A few cells Entire dorsal 
cortical surface 
(~10-​mm 
diameter)

Large-​sensor sCMOS 
camera, lenslet array 
(<$1,000), minimal 
alignment, small spatial 
footprint, total <$50,000, 
large glass window 
surgery

Yes, with viral 
or transgenic 
reporter 
expression

Not currently 23

Single Neuropixels 
probe

More than 
kilohertz

Single cell Select regions 
throughout the 
brain, along a 
single linear 
trajectory

Fragile probe (each 
~$1,000), acquisition 
hardware (<$50,000), 
relatively simple burr-​hole 
craniotomy surgery

Possible with 
optotagging

Yes, including 
probe 
reusability

54,56, 

151,224

Optoencephalography 
(widefield imaging)

>10 Hz Bulk activity 
of many cells

Entire dorsal 
cortical surface 
(~10-​mm 
diameter)

sCMOS camera, minimal 
alignment, small spatial 
footprint of hardware 
system, total <$50,000, 
simple surgery

Yes, with viral 
or transgenic 
reporter 
expression

Yes 6,16,48, 

58,83

Multifibre photometry >10 Hz Bulk activity 
of many cells

Select regions 
throughout a 
brain

sCMOS camera, fibre 
bundle, commercial 
systems (<$20,000), 
multiple fibre implant 
surgery

Yes, with viral 
or transgenic 
reporter 
expression

Yes 67,111,113

Photoacoustic 
imaging

>10 Hz Bulk activity 
of many cells

Whole brain High-​power pulsed 
laser, custom ultrasound 
transducer array, 
non-​invasive preparation 
with intact skin and skull 
(~$350,000 total)

Yes, with viral 
or transgenic 
reporter 
expression

Not currently 133

COSMOS, cortical observation by synchronous multifocal optical sampling; GRIN, gradient index; sCMOS, scientific CMOS.
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The development of bright genetically encoded 
fluorescent activity sensors led to the use of widefield 
one-​photon imaging for simultaneously measuring neu-
ral activity across multiple regions of the rodent dorsal 
cortex58. These widefield techniques that combine fast, 
mesoscopic resolution on the scale of multiple subre-
gions of the brain (even beyond just the cerebral cortex) 
can be termed ‘optoencephalography’ (OEG), as they 
offer a perspective reminiscent of electroencephalogra-
phy, but with the genetic and spatial specificity of optical 
activity sensors. Early optoencephalographic approaches 
used synthetic voltage-​sensitive dyes applied to exposed 
cortex16,59,60. More recently, the development of trans-
genic mice that express sensitive and bright genetically 
encoded Ca2+ sensors (for example, GCaMP) emerged as 
a reliable means of obtaining cell type-​specific recordings 
from across the cortex61–63. Additionally, the develop-
ment of viral capsids that efficiently cross the blood–
brain barrier enabled intravenous delivery of desired 
transgenes (for example, encoding GCaMP) across the 
brain48,49,64. Of practical importance, the skull can even 
be made sufficiently transparent to facilitate widefield 
imaging with no craniotomy, through refractive-​index 
matching by application of optical glue or cement65. 
However, due to scattering (as well as typically dense 
neuronal labelling), regional-​scale optoencephalo-
graphic approaches should be considered as mesoscopic, 
with information in a typical pixel derived from regional 
activity on the order of thousands of neurons.

Microscopes suitable for OEG must offer high light 
collection with good image quality across a large field 
of view, particularly when imaging more-​sensitive but 
less bright fluorophores such as GCaMP6f. A common 
approach is inspired by a tandem-​lens design with 
consumer camera lenses that were originally used for 
intrinsic imaging66. One key consideration is that the 
optoencephalographic signal can be contaminated by 
time-​varying haemodynamic artefacts, caused by var-
iation in absorption as the amounts of oxygenated and 
deoxygenated haemoglobin fluctuate in a given area 
of the brain. This artefact can be corrected by measur-
ing the Ca2+-​independent fluctuations, either by using 
the isosbestic excitation wavelength of GCaMP around 
410 nm (refs.48,67) or by measuring haemodynamic 
absorbance with reflected green light63,68, and subtract-
ing this from the raw Ca2+-​dependent optoencephalo-
graphic signal. Failing to correct for haemodynamic 
artefacts may lead to spurious conclusions and will 
hinder reproducibility both within and between mice.

Precisely what is being measured by an optoen-
cephalographic imaging technique depends on the 
specific experimental preparation — and the means of 
delivering the fluorescent sensor. Specific cell types are 
commonly targeted using genetically or anatomically 
delivered recombinases such as Cre, which through 
recombination enable cell type-​specific expression 
of an indicator gene that is more universally present 
but in a recombinase-​dependent form. Many rele-
vant Cre-​driver transgenic rodent lines have been 
created62,69,70, including as part of the BRAIN Initiative 
Cell Census Network71,72, along with diverse viral vec-
tors carrying genetically encoded indicators that can 

even depend on two or three different recombinases for 
highly specific expression44,73. Targeted cell types can be 
excitatory (for example, VGLUT1 expressing), inhibitory 
(GAD2 expressing, somatostatin expressing or parvalbu-
min expressing) or cortical layer specific. Drivers exist 
for layer 2/3 (Cux2–Cre), layer 4 (Scnn1a–Tg3-​Cre), 
layer 5 (Rbp4–Cre) and layer 6 (Ntsr1–Cre)74. With less 
specific expression, for example when an Slc17a7–Cre 
mouse is used to drive GCaMP expression across all 
cortical layers, Monte Carlo simulations have suggested 
that most of the signal should arise from layer 2/3 (ref.75), 
although this may depend on the specific expression pat-
tern, and there is evidence that most of the optoenceph-
alographic signal derives from fluorescence emitted by 
layer 1 neuropil that may include layer 5 dendrites48. The 
combinatorial use of different sensors also affords new 
experimental opportunities. For example, two-​colour 
optoencephalographic imaging has been used to record 
from excitatory and inhibitory populations48; one recent 
implementation combined a red fluorescent Ca2+ indi-
cator (jRCaMP1b) with a green fluorescent acetylcho-
line sensor (ACh3.0)76. Beyond Ca2+ sensors, other 
genetically encoded fluorescent sensors can be used in 
conjunction with these same optical methods and Cre 
lines to enable the brainwide measurement of the release 
of glutamate, GABA or dopamine77,78. Finally, a new gen-
eration of voltage sensors is becoming available that may 
be more suitable than Ca2+ sensors for some widefield 
imaging experiments (see ‘Voltage imaging’).

Regarding the use of transgenic animals to express 
genetically encoded sensors, it is important to be aware 
that the expression of any non-​native protein in the brain 
(especially during development) may lead to changes in 
cellular, or even circuit-​level, function. For instance, it 
has been shown that using some strains of transgenic 
mice to express the Ca2+ sensor GCaMP during devel-
opment can lead to aberrant cortical activity (remi-
niscent of seizures) in some mouse lines79. Therefore, 
it is always important to validate an experimental 
preparation by performing appropriate control exper-
iments. In this specific case, use of inducible GCaMP 
lines, where the expression of non-​native protein can be 
delayed until mice have reached adulthood, can mitigate  
this issue79.

Beyond the cortex, OEG has been successfully applied 
to other structures along the surface of the brain —  
namely the cerebellum80 and superior colliculus81,82. 
Moving forward, it will be exciting to develop new 
experimental preparations that will enable simultane-
ous visualization of these structures in addition to the 
surface of the dorsal cortex. OEG has also recently been 
extended to freely moving settings, with head-​mounted 
microscope designs for rats83 and mice84. Finally, 
OEG can be paired with other techniques, such as 
whole-​brain functional MRI85, or use of home-​cage 
systems where mice learn to head-​fix themselves for 
widefield imaging86,87.

Cellular-​scale widefield imaging of the cortex. A number 
of steps are required to advance beyond the regional-​
scale (millimetre scale in the mouse) spatial resolution 
of OEG. First, the quality of optical access to the brain 
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must be improved beyond that afforded by an index-​
matched clear skull preparation. Among other steps, 
this improvement requires a large craniotomy, as well 
as a clear window that is curved to match the curva-
ture of the brain, and made from glass88 or plastic89. It is  
possible to flatten the brain to some extent, but there  
is a limit to how large the window can be before signifi-
cant tissue damage is caused48. Craniotomies have been 
successfully demonstrated with use of manual surgical 
techniques or with the semi-​automated assistance of a 
robotic stereotaxic apparatus23.

Second, to address defocused signal and scattering, 
fluorescent protein expression must be restricted, either 
to a subset of neurons or to a localized part of each neu-
ron. In one approach, the use of tamoxifen-​dependent, 
layer 2/3/4-​restricted expression of Cux2–CreER 
allowed limitation of GCaMP expression to a sparse set 
of superficial neurons23. The influence of layer 1 neuro-
pil signal was thereby minimized (relative to less spe-
cific expression strategies used for widefield imaging). 
Other strategies include driving sparse expression using 
intravascular injections of blood–brain barrier-​crossing 
adeno-​associated virus variants such as PHP.eB49. 
Limiting neuropil fluorescence can also be helpful in 
this respect, most efficaciously and definitively through 
the use of nuclear-​restricted GCaMPs created by histone 
H2B fusions90–92, although other forms of targeting can 
include partial restriction of GCaMP to cell bodies 
through use of peptide tags derived from potassium 
channels (Kv2.1) or ribosomal subunits93–95.

Third, an imaging system is needed to permit record-
ing across the curved, centimetre-​scale extent of the 
mouse dorsal brain surface, with high light collection 
and good image quality. For mesoscopic OEG, the cur-
vature of the brain surface is less of an issue because 
the defocus blur is itself roughly on par with the spatial 
resolution of the technique. When the goal is cellular or 
near cellular resolution, however, the defocus becomes 
a severe limitation on the accessible field of view88. This 
is due to the curvature of the dorsal surface of the brain, 
and is therefore an issue regardless of whether the dorsal 
skull has been replaced with a curved-​glass window23,88 
or a polymer-​based window89,96.

To address this issue, cortical observation by syn-
chronous multifocal optical sampling (COSMOS) 
uses a bifocal lenslet array and a single camera sen-
sor to simultaneously record in-​focus videos of the 
medial and lateral regions of the cortical surface. This 
approach has been used to record ~30 Hz signals from 
thousands of cellular to near cellular resolution neu-
ronal sources simultaneously across the entirety of 
the mouse dorsal cortex23. A more complex technique 
(real-​time, ultra-​large-​scale, high-​resolution imaging) 
uses a set of 35 cameras arranged in a 5 × 7 array and 
a custom objective lens to achieve gigapixel imaging of 
neuronal dynamics across the curved cortical surface97. 
Additional possible tactics include use of fast tunable 
lenses, although this approach is hindered by optical 
aberrations and a trade-​off between the speed of tuna-
bility and the size of the optical aperture. By combining 
high numerical aperture objectives with high-​resolution 
cameras, lightfield98,99 and light-​sheet100–102 microscopes 

can potentially enable truly volumetric multiregion 
imaging; moreover, eventually these approaches may 
be miniaturized to the level of applicability in freely 
behaving rodents. Along these lines, the Computational 
Miniature Mesoscope used miniaturized lenslet optics 
in a first step towards head-​mounted, cortex-​wide, vol-
umetric imaging in freely moving rodents, although 
considerable development work will still be required to 
achieve that goal103.

One-​photon imaging techniques in scattering mam-
malian tissue do not guarantee true single-​cell resolution. 
For example, with use of a visual-​stimulus assay with 
comparison with ground-​truth high-​magnification 
two-​photon data, different neuronal sources compu-
tationally extracted from COSMOS data were esti-
mated to be derived from 1–15 neurons23. Similar 
preparations using different Cre lines, or higher- 
magnification objectives, may yield results even closer 
to single-​cell resolution104, but all such one-​photon  
microscopy approaches fundamentally lack the axial 
resolution to guarantee single-​neuron resolution. 
Still, it has been demonstrated that these cellular- 
scale data occupy a fundamentally different regime of 
experimental utility, compared with much lower reso-
lution regional-​scale widefield approaches. Although 
one-​photon cellular-​scale recording techniques should 
not be generally used to make claims about the response 
properties of individual cells, these methods permit the 
study of high-​dimensional population coding across 
large neuronal ensembles23.

Multifibre photometry. While OEG and COSMOS pro-
vide straightforward access to multiple superficial brain 
areas, these optical approaches are not readily applica-
ble for imaging deep regions. Therefore, to reach areas 
deep in the brain, it is common to remove tissue or 
implant a light conduit, taking advantage of the fact that 
one-​photon illumination is easy to transport through a 
multimode optical fibre. Such fibre photometry105 tech-
niques can be sensitive enough to acquire activity signals 
arising from axons deep in the living mouse brain, while 
also being compatible with optogenetics, and enable cell 
type-​specific optical recording access to anywhere in 
the brain that can be reached by an implanted fibre 
optic cannula105–109, although they average signal across 
many neurons in a volume110. Similar principles have 
been adapted for recording using genetically encoded 
voltage sensors111, and use of a tapered fibre can even 
enable depth-​resolved recording from along the extent 
of the fibre112. Importantly, this fibre-​based recording 
approach can be extended to multiple implanted fibres 
to enable multiregion recording, as demonstrated by 
frame-​projected independent-​fibre photometry67, as 
well as by a large-​scale photometry technique that uses 
high-​density arrays of optical fibres to simultaneously 
target up to 48 brain regions113. Of course, increasing the 
number of optical fibres inserted into the brain displaces 
more brain tissue — with greater potential for adverse 
effects on circuit function and behaviour, a theme com-
mon to all forms of brain interfacing, including elec-
trophysiology and microendoscopy (which requires 
implanted lenses). In each case, the size and the number 
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of neural implants must be balanced against concerns 
about potential damage; validating relevant baseline 
behaviour of animal subjects is always important in 
this regard.

Voltage imaging. With extracellular electrophysiological 
recordings (discussed later), it is difficult to know what 
fraction of the active neurons surrounding an electrode 
are being sampled — especially when there are many 
sparsely firing cells. Identifying spatial structure at 
fine spatial scales is also difficult: electrode arrays do 
not permit precise localization of units except in very 
limited scenarios (for example, 2D arrays on organo-
typic slices or cell cultures). On the other hand, Ca2+ 
imaging presents different limitations. Ca2+ sensors 
permit high spatial resolution but provide an indirect, 
and low-​pass-​filtered, measure of action potential fir-
ing114–116 (also see Box 1). While models exist to estimate 
action potential firing rates from Ca2+ measurements, in 
some situations it would be preferable to simply meas-
ure voltage directly. Indeed, cellular resolution, high- 
speed voltage imaging techniques could represent the  
best of both worlds — offering genetic specificity in 
recordings, dense measurements from even sparsely active 
neurons, an optical readout of action potential wave-
form shape and even information about subthreshold  
membrane voltage115,117–121.

Significant progress has been made over the past 
decade along these dimensions. A host of novel genet-
ically encoded voltage indicators are now available, 
including the ASAP family119,122, ArcLight118, the QuasAr 
family121,123–127 and Voltron (which requires the addition 
of a synthetic Janelia Fluor fluorophore)117. With use of  
the latest variants of these tools, it is now possible to 
perform cellular resolution voltage imaging such that 
both action potentials and subthreshold signals can 
be measured in single trials, from small ensembles of 
neurons. Variants of QuasAr are also compatible with 
optogenetic tools such as CheRiff (a blue-​shifted chan-
nelrhodopsin) or other newly developed red-​shifted 
opsins such as ChRmine123,125,126,128; this approach could 
lead to the voltage sensor version of all-​optical reading 
and writing of neural activity into neural ensembles 
to modulate animal behaviour, as achieved with Ca2+ 
sensors previously.

Together, these results point to a promising future 
for voltage imaging. Unfortunately, at the moment, there 
are also significant challenges that must be overcome 
before Ca2+ imaging or electrophysiology is displaced — 
especially for multiregion experiments. First, voltage 
dynamics are much faster than Ca2+ dynamics, neces-
sitating that high signal-​to-​noise ratio (SNR) optical 
signals be measured at kilohertz rates to resolve action 
potential waveforms, compared with the 2–200-​Hz range 
seen with Ca2+ imaging data. Consequently, genetically 
encoded voltage indicators must emit far more photons 
per unit time than Ca2+ sensors to achieve a comparable 
SNR, because signals can be integrated for far less time 
per frame. To remedy this issue, most voltage imaging 
systems use one-​photon methods to image small fields of 
view. The most obvious alternative would be to increase 
the excitation laser power to levels that might damage 
tissues of interest, or to use two-​photon methods that 
require novel approaches for fast laser scanning, such as 
beam multiplexing.

In line with this, recent articles have presented two- 
photon microscopy approaches called ‘ultrafast local vol-
ume excitation’ and ‘free-​space angular chirp-​enhanced 
delay’, which were reported to permit in vivo measure-
ment of action potentials and subthreshold dynamics 
with the ASAP3 genetically encoded voltage indica-
tors (but only from 3 and 20 simultaneously recorded 
neurons, respectively122,129). One-​photon approaches 
can measure activity from more neurons at coarser 
spatial resolution — but due to constraints of camera 
acquisition rate, thermal damage and photon-​flux con-
cerns, only up to a few dozen neurons can be imaged 
simultaneously117,120,123. True multiregion population 
voltage data are, at the moment, attainable only by 
combining use of the existing genetically encoded volt-
age indicators with imaging methods that lack cellular 
resolution, such as OEG and fibre photometry111,130,131. 
But a recent preprint reports integration of a custom 
two-​photon system, a new voltage sensor (SpikeyGi) 
and a nonlinear denoising algorithm (DeepVid) that 
permitted in vivo imaging of approximately 100 neurons 
for over 1 h (ref.132). While this approach remains to be 
validated, especially because denoising algorithms rely 
on difficult-​to-​characterize supervised deep learning 

Box 1 | Processing multiregion neural data

A new generation of mostly automated data-​processing pipelines has become available 
to efficiently analyse multiregion neural datasets of increasing size.

Extracellular electrophysiology and spike sorting
Starting with raw multielectrode voltage data, spike waveform-​specific bandpass filters 
are applied before a spike detection algorithm (often just a threshold) is run to identify 
candidate action potential times. This leaves the final step of ‘spike sorting’: the process 
of taking each extracted spike and its waveform shape and sorting them into distinct 
lists of spikes (called ‘units’) that share similar properties. The resulting units are the 
starting point for most subsequent analyses. There are now many competing approaches 
for semi-​automated spike sorting56,254–259, but because it is a difficult problem, no single 
algorithm is appropriate for every experimental scenario257. New pipelines that include 
many alternative algorithms make it easier to compare many approaches on a single 
dataset254.

Two-​photon Ca2+ imaging and source extraction
Many algorithms114,260–262 now automatically identify the location and shape of each 
neuron present in a two-​photon fluorescence video. Some pipelines also perform a  
final step, which is to perform ‘spike inference’ and estimate a discrete-​time firing rate 
histogram for each neuron so as to recover information that might have been smoothed 
out by the slow temporal kinetics of the Ca2+ sensor263–265. A recent study acquired data 
wherein two-​photon Ca2+ imaging was performed before electron microscopy provided 
a ‘gold standard’ for quantitatively evaluating spatial source extraction algorithm 
performance266. Benchmarks quantifying spike inference algorithm performance are 
also available267,268, as are other packages for generating realistic simulated data that 
can be used for comparing different analysis approaches269.

One-​photon Ca2+ imaging and source extraction
Single-​photon Ca2+ fluorescence videos can vary dramatically — depending on whether 
they are obtained from a small field of view endoscope implanted deep in the brain or 
from a widefield microscope. In either case, the signals observed in a given pixel are likely 
to have arisen from many neurons stacked on top of each other in space. Recent work 
has involved the development of statistical inference tools270–272 to separate in-​focus 
neural signals from deeper out-​of-​focus noise — and to extract a single denoised trace 
for each detected neuronal source. Manual validation of components extracted with  
any processing approach here is especially critical, especially if motion artefacts are 
significant.
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methods, this progress gives reason to believe that within 
a few years population voltage imaging may become 
more broadly applicable — at least for measuring 
single-​region neural population activity.

Photoacoustic imaging. Another approach to brainwide 
recording of neural signals (versus haemodynamic or 
structural signals) uses the optoacoustic effect. Here, 
ultrasound waves are generated by transient light 
absorption, which can be detected through centimetres 
of tissue. By the pulsing of bright one-​photon excita-
tion, changes in fluorescent indicator absorbance can 
be measured throughout the entire brain volume133. 
Unlike functional MRI or intrinsic imaging methods 
which measure haemodynamic signals, photoacous-
tic methods using genetically expressed fluorescent 
indicators directly measure signals emitted from neu-
rons. Ultrasound transducer arrays must be coupled 
to the brain by water or gel — as with high-​resolution 
optical microscopy methods that rely on immersion 
objective lenses. But to enable whole-​brain tomogra-
phy, these ultrasound arrays must be coupled over a 
much larger area. These steric constraints may pose  
a challenge for application of this method to freely mov-
ing rodent preparations, and potentially to even some 
awake-​behaving scenarios. In vivo, photoacoustic meth-
ods are also limited by the degree to which blue excita-
tion for GCaMP can travel through the brain without 
blood absorption. However, application of this tech-
nique with red-​shifted indicators should increase the 
depth, and will reduce the impact of haemodynamic-​
related signals. This approach can be combined with 
the simultaneous use of other ultrasound-​based 
methods for functional stimulation or haemodynamic  
recording134.

Two-​photon fluorescence
While one-​photon methods are straightforward to 
implement and use, are relatively inexpensive and per-
mit video-​rate acquisition from molecularly defined 
neuronal populations across large fields of view, they 
generally do not offer unambiguous single-​cell resolu-
tion in scattering mammalian brain tissue. In contrast, 
two-​photon optical fluorescence techniques use very 
high intensity excitation light of a longer wavelength 
(that is, infrared) to elicit fluorescence of a shorter 
wavelength (that is, green). Two-​photon fluorescence 
depends on the square of the excitation light inten-
sity, because sufficient photon density is required to 
achieve simultaneous fluorophore excitation by two 
lower-​energy photons. This nonlinear dependence 
affords two key advantages: optical sectioning, which 
results from restriction of emission to the focal plane, 
and robustness to scattering, which results from the 
increased scattering length of infrared light, as well as 
the raster-​scanned photon counting imaging process135. 
Disadvantages of two-​photon methods include the high 
cost of the pulsed laser and inherent speed limitations of 
a raster-​scanned approach.

Originally, two-​photon microscopy approaches used 
high-​magnification objectives to observe sub-​millimetre 
fields of view. Over the past few years, there have been 

efforts to extend this technique to record from multiple 
regions. One approach is to use two high-​magnification 
objective lenses, with separate beam paths136. With care-
ful planning, these objective lenses can be positioned 
across the brain, potentially in tandem with implanted 
endoscopes or with optogenetic manipulation of 
additional regions137.

Another approach is to use a single, large, low- 
magnification objective lens. Because of the specialized 
high numerical aperture requirements of two-​photon 
imaging, this approach has required the design of 
expensive, customized objective lenses. The two-​photon 
random access mesoscope developed by Sofroniew et al. 
has a 5-​mm-​diameter field of view, with a numerical 
aperture of 0.6, near-​diffraction-​limited performance 
and a remote focusing module to allow access to multiple 
focal planes across the imaged volume138. The raster-​scan 
pattern is adjustable, and can image the entire field of 
view at up to 4.3 frames per second at low resolution or 
0.7 frames per second at high resolution.

Higher speeds can be achieved by imaging a few sub-
regions, yielding performance similar to that of multiple 
objective lens microscopes. The Trepan2p microscope 
has a 3.5-​mm-​diameter field of view, with a numerical 
aperture of 0.43 NA, diffraction-​limited performance 
with a curved field and a tunable lens for volumetric 
acquisition139. The full field of view could be scanned 
with one beam at 0.1 frames per second, but the micro-
scope has two separate beam paths to enable simultane-
ous acquisition of two smaller subregions at 30 frames 
per second.

Other microscopes have been explicitly designed to 
image multiple subregions with one objective, for sce-
narios wherein it would be mechanically difficult to 
place two objective lenses next to each other, such as 
when one is imaging the primary and secondary soma-
tosensory cortex140,141. The Diesel2p mesoscope has a 
5-​mm-​diameter field of view, with a numerical aperture 
of 0.54, and dual independent scan engines for simulta-
neous imaging of two regions, or from four regions in the 
Quadroscope version of the microscope142,143. By use of an  
elongated point spread function, it is possible to scan 
an entire 4 mm× 4 mm × 100 µm volume, as opposed  
to just a single focal plane, at 3.2 Hz (ref.144). Last, light 
beads microscopy uses a set of axially separate and tem-
porally distinct foci to record nearly simultaneously 
from the entire axial imaging range, recording from 
approximately 5.4 × 6 × 0.5 mm3 volumes at around 2 Hz 
— potentially enabling cellular resolution recordings 
from up to one million total neurons145.

Many approaches further increase imaging speed by 
multiplexing the two-​photon beam into many beam-
lets that can be scanned in parallel (or remain statically 
parked on neurons of interest). For example, one micro-
scope with 16 beams and 16 detectors can sample from 
a 2 × 2 mm2 field of view at up to 17.5 Hz (ref.146), while 
another uses 400 beams with scientific CMOS camera 
detection to sample a sub-​millimetre field of view at 
kilohertz frame rates147. With two-​photon excitation, 
however, the SNR is reduced for a given laser power 
due to the focusing of illumination into additional focal 
spots148. Additionally, scattering-​related advantages of 
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two-​photon imaging begin to decrease as more focal 
spots illuminate the specimen.

Two-​photon imaging in a small field of view has 
also been combined with simultaneous OEG, through 
the use of a prism to enable high-​magnification access 
with relatively little obstruction of the OEG field of 
view149. Recently developed head-​mounted two-​photon 
microscopes suitable for studying freely moving 
behaviour in mice150 might be productively integrated 
with OEG to provide broader functional information. 
High-​resolution structural two-​photon scans could also 
be obtained from these same mice under head fixation. 
Such a multimodal approach would enable registration 
of freely moving population activity datasets to detailed 
anatomical and molecular datasets — all at cellular 
resolution.

Electrophysiology
Unlike optical methods, extracellular electrophysiology 
directly records electrical activity associated with action 
potentials on the millisecond timescale of individual 
spikes; such high acquisition rates facilitate assigning 
individual spikes to specific neurons, or units, on the 
basis of the characteristic shape of each neuron’s spike 
waveform. However, algorithms to perform this task of 

‘spike sorting’ are imperfect, require some manual cura-
tion and are sensitive to artefacts from animal move-
ment and probe location drift over time. In recent years, 
advances have been made towards improving and auto-
mating these data-​processing techniques, but challenges 
remain (see Box 1). Other challenges inherent to elec-
trophysiology, compared with imaging, include reduced 
compatibility with targeting the readout to genetically or 
anatomically defined cell types, reduced long-​term sta-
bility of single-​cell identification across days and, until 
recently, recording simultaneously from only a handful 
of neurons in vivo. However, with the development of 
high-​density, multiple-​site electrodes, it has now become 
possible to simultaneously record from thousands of 
units, spanning many brain regions (with straightfor-
ward access to subcortical regions in mouse), includ-
ing during optogenetic control18,34,56,151. These advances 
have been driven primarily by the transition from 
microwire-​based recording systems to silicon-​based and 
polymer-​based probes. Microwire tetrode arrays remain 
a benchmark tool for obtaining stable recordings from 
single units over many weeks152, but this may change over 
the next decade as easier-​to-​manufacture silicon-​based 
and polymer-​based probes become available.

The choice to use electrophysiological versus imag-
ing methods presents a number of trade-​offs115. For 
instance, imaging permits dense sampling of neurons 
along individual planes, whereas electrode-​based meth-
ods sparsely sample neurons along the depth of each 
recording probe56,153, or from dispersed points in space 
where tetrodes have been placed17,152. For a discussion of 
these considerations and others regarding temporal res-
olution, spatial sampling, and optogenetic compatibility, 
see Box 2.

Silicon-​shank probes. Silicon-​based probes with tens 
to thousands of electrical contacts per shank are now 
widely available — a major increase versus microwire 
arrays, which typically consist of a few dozen wires at 
most152. Silicon-​shank probes are also significantly 
narrower than microwire-​based probes, therefore 
reducing tissue damage. More recently, silicon-​based 
probes (termed Neuropixels) were developed with active 
amplification and digitization on the base of each probe 
itself151. This design significantly increases the SNR, 
especially in freely moving settings. These Neuropixels 
1.0 probes are manufactured using CMOS nanofabrica-
tion and, in their most common configuration, have 960 
recording sites across an ~4-​mm linear span, with up to 
384 sites recordable simultaneously. A single probe thus 
allows sampling from multiple brain regions, depend-
ing on the trajectory of insertion. Multiple successive 
probe insertions can be used to accumulate asynchro-
nously recorded data from many regions across multiple 
sessions18,34.

More recently, Neuropixels 2.0 probes56 were described  
with a geometry similar to in the original probes, but 
are also available in a four-​shank configuration. This 
means 384 simultaneous channels can now be meas-
ured over an area 750 µm wide and to a depth of 720 µm 
(with the four shanks evenly spaced across this area). 
A single headstage can also now mount two probes, 

Box 2 | Which multiregion recording technique should you use?

Spatial resolution: many multi-​unit signals versus fewer unambiguous single 
units
Cellular resolution data are critical for questions pertaining to single-​neuron tuning, 
and for relating physiology to cell-​type identity. But when the goal is to decode 
information rapidly, to compare activity between regions or to study population codes 
under different behavioural circumstances, multi-​unit spiking data or multineuron 
imaging techniques such as cortical observation by synchronous multifocal optical 
sampling may offer many more signals than cellular resolution approaches — and still 
yield suitable data for many population analyses23,162.

Spatial coverage: dense, slow data versus sparse, fast data
Silicon electrode arrays such as Neuropixels measure activity from a sparse subset  
of neurons near the probe, with straightforward access to subcortical regions in the 
mouse. In contrast, a two-​photon microscope can see vastly more neurons per unit  
area. But this increased spatial coverage comes at the expense of temporal resolution: 
scanning a laser across an entire plane or volume takes many milliseconds, whereas 
each electrode on an array can be recorded at kilohertz data rates. More generally, 
scanning a laser over a volume, while remaining at each pixel long enough to measure  
a useful signal from any neurons that may be present there, enforces a trade-​off among 
temporal resolution, coverage density and area sampled.

Temporal resolution: many neurons at low speeds versus few neurons at high 
speeds
While Ca2+ imaging permits dense access to cellular resolution activity measurements 
from genetically defined populations, this comes at a cost. Most existing Ca2+ sensors 
are unable to reliably measure single action potentials in single trials114–116, independent 
of the data acquisition rate. Ca2+ sensors report a noisy proxy of neuronal firing passed 
through a nonlinear filter114,267,268. Despite advances in voltage imaging, electrophysiology 
remains the ‘gold standard’ for recording with single-​spike resolution.

Optogenetic compatibility: writing neural activity without compromising read 
capability
Shining a light near an electrode array can generate stimulus-​locked electrical artefacts 
via photovoltaic, photoelectrochemical or electromagnetic effects273,274; however, 
recently designed electrodes appear fairly resilient to this issue151,274, and recently 
developed ultrasensitive opsins permit the use of reduced light intensities for 
photostimulation128,275,276. Similarly, new spectral variants of Ca2+ indicators, such  
as XCaMPs and sRGECO73,277, have increased compatibility with optogenetic tools  
— particularly in conjunction with red-​shifted channelrhodopsins128.
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permitting another four shanks to be inserted within a 
few hundred microns of the first probe — with spac-
ing limited only by the mounting fixture used, as the 
probes themselves connect to the headstages with flex-
ible connectors. Building upon previous work with the 
first-​generation probes54,151,154, Neuropixels 2.0 probes 
are more suitable for long-​term (chronic) implantation 
and for use with freely moving animals owing to their 
reduced weight (the total weight of two 2.0 probes and 
a headstage is ~1.1 g versus ~1.3 g for a single 1.0 probe 
and a headstage; implant weights exclude the weight of 
the structural materials and cement that must be used 
to stabilize each probe) and new methods correcting for 
motion artefacts in acquired data56,153.

Use of multiple probes simultaneously, typically 
in a head-​fixed configuration, permits a substantial 
increase in the number of regions that can be monitored. 
Recordings in mice have been performed from up to 
eight simultaneously inserted Neuropixels probes across 
the brain22, or in a targeted manner to investigate visual 
cortical and thalamic regions33. Typically, electrode 
probes are dipped in lipophilic dyes155 so that the inser-
tion track of each probe can be identified in histological 
sections, or in three-​dimensionally cleared tissue18,33,34, 
and are then aligned with a reference atlas such as the 
Allen Mouse Brain CCFv3 (discussed earlier). But lim-
itations remain, including with respect to compatibility 
with cell type-​specific recording methods such as OEG, 
since silicon-​based probes and headstages are not opti-
cally transparent. Recording stability and quality also 
significantly degrade over time (1–2 months), probably 
as a consequence of issues with biocompatibility and 
mechanical damage to the surrounding tissue arising 
from a lack of flexibility.

Flexible polymer-​based probes. In terms of combining 
multielectrode recordings with OEG or two-​photon 
imaging, flexible or transparent probes may be useful. 
These properties can be obtained through the devel-
opment of neural interfaces fabricated on polymer 
substrates, instead of shanks made of silicon156–158. 
Polymer-​based probes such as the Neuro-​FITM probe 
may be particularly useful for simultaneous imaging158, 
which is possible but difficult with silicon-​based 
probes159,160. The Neuro-​FITM probe is a 32-​channel 
or 64-​channel device with electrodes deposited on a 
flexible polymer, while maintaining a spike SNR com-
parable with that of Neuropixels probes, and is optically 
transparent so as to permit simultaneous OEG.

Flexible polymer-​based probes may also be valuable 
for obtaining stable, high-​yield recording over many 
months57,157. Again, obtaining such data is possible 
with modern silicon-​based probes55,56,154 and tetrode 
arrays152. However, improved biocompatibility relative 
to microwire bundles and silicon devices may permit 
increased long-​term unit yield, and the flexible nature 
of polymer-​based probes may also be more suitable for 
recording from larger animals or deep neural structures 
(such as the brainstem and spinal cord), where the abil-
ity of these probes to move and bend with neural tissue 
compares favourably with the properties of silicon-​based 
probes57,158,161. But for now, the capability of modern 

silicon-​based probes such as Neuropixels 2.0 is quite 
impressive, and it remains to be seen whether alterna-
tive, polymer-​based approaches will be widely adopted 
beyond specific use cases, such as where a transparent 
or highly flexible probe is required.

Future advances in multiregion recording
Recording methods continue to improve but eventually 
will encounter physical limits. Will it ever be possible 
to simultaneously record the action potential firing 
of every individual neuron in an entire mammalian 
brain? Theoretical analysis suggests arrays of advanced 
electrode probes may someday be able to record from 
most of the neurons in the cortex, or potentially a large 
fraction of a rodent or primate brain161. Nearer term, 
the highest-​yield recording methods are still based on 
optical imaging techniques with significant trade-​offs 
between spatial and temporal resolution, such as light 
beads microscopy, which might simultaneously obtain 
Ca2+ signals from up to one million neurons but at ~2 Hz 
(ref.145). Multiple optical paths with identical optics could 
potentially be constructed to simultaneously measure 
adjacent million neuron-​sized fields of view so as to 
sample densely from most of the neurons in the mouse 
cortex, albeit still at coarse temporal resolution. More 
practically, approaches such as COSMOS that approx-
imate cellular resolution but cover huge spatial extents 
may find increasing utility23. By combination of large 
field of view OEG methods with electrode arrays159,160, 
two-​photon imaging149 or voltage imaging, many multi
region experiments that require different kinds of infor-
mation from different brain areas are already feasible. 
Over the next decade, trade-​offs among these rapidly 
advancing methods will likely become less significant 
as the field moves ever closer to the goal of comprehen-
sively recording neural activity across the entire brain. 
But regardless of the ultimate method chosen, the ques-
tion of how to best analyse multiregion data will remain 
a pressing concern (given these vast datasets), thus rep-
resenting another area that has seen many innovations 
in the past decade23,162.

Analysis techniques
Embedded in the choice of a data analysis method, 
and of each processing step, is a set of assumptions and 
biases for looking at the brain in a particular way. In 
this section, we present a taxonomy of existing neural 
analysis approaches that apply to cellular-​scale datasets 
spanning multiple brain areas. Unique challenges and 
opportunities have arisen with the advent of multiregion 
cellular-​scale data streams. Our intention is to articulate 
how particular analysis strategies are more appropriate 
for some kinds of questions about multiregion popula-
tion coding than others. Importantly, selecting an analy-
sis strategy implicitly restricts the hypotheses that can be 
tested, although this is often not explicitly acknowledged.

Analysis strategies for multiregion data
Historically large-​scale neural recording approaches 
include indirect haemodynamic methods such as func-
tional MRI for imaging and bulk recording methods 
such as electroencephalography or field recording for 
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electrophysiology. These approaches have permitted 
interrogation of brainwide circuits and systems — but 
at spatial and temporal resolution orders of magnitude 
coarser than for cells and spikes. As discussed earlier, 
recent advances have changed this landscape, presenting 
new approaches for relating the information contained in 
the spike trains of individual, genetically defined neurons 
to computations performed by brainwide networks.

Recent analyses of multiregion cortical datasets have 
revealed that many phenomena previously thought to 
be fairly restricted to specific brain regions are actually 
present across many areas18,21–23. Our capacity to under-
stand these results is rapidly expanding now that we 
have access to multiregion data. For instance, the lim-
ited field of view of conventional two-​photon imaging 
typically requires asynchronous sampling from distinct 
brain regions, and thus only trial-​averaged responses 
can be compared between areas. However, such trial- 
​averaged comparisons may bear little resemblance to 
true moment-​to-​moment correlations measured using 
simultaneous multiregion data23. While low spike-​train 
correlations do not necessarily prove the existence of 
low levels of shared input163,164, such results do suggest 
that there is much for us to uncover regarding how the 
downstream actions of a particular neural circuit may 
yield different behavioural outputs, depending on the 
context165,166; new analytical approaches will be key for 
successfully performing large-​scale single-​trial analyses 
instead of pooling data across trials and animals.

To analyse large neural datasets and attempt to 
answer these questions, at least three general approaches 
are relevant (Fig. 2). First are approaches for localizing 
information, largely based on computing correlations 
between recorded neurons and external covariates such 
as measured behavioural and stimulus features (Fig. 2a). 
This approach can be applied by fitting predictive mod-
els to test specific hypotheses, or by more exploratory 
analyses ranging from trial averaging based on behav-
ioural structure to the study of neuronal firing across 
different temporal epochs of a dataset. Second are 
approaches for identifying population activity patterns 
— either by examining how neurons fire relative to one 
another or by examining how groups of neurons fire 
with respect to coincident behaviour (Fig. 2b). These 
algorithms enable visualization, description and model-
ling of the joint activity of groups of thousands of simul-
taneously recorded neurons. Third are approaches for 
quantifying network interactions that occur both within 
and between different brain areas (Fig. 2c). One increas-
ingly popular approach here is to use new modelling 
techniques that can be fitted to large neural datasets. 
The resulting models match many features of the neural 
data but are more amenable to analysis and understand-
ing. Therefore, these models can be rapidly analysed 
and experimented on in silico before the predictions are 
tested in new biological experiments. We discuss each 
analytical approach in turn.

Localize information
A common goal in many of these analyses, whether for 
large or small datasets, is to relate information about 
sensory stimuli or behavioural output to recorded 

neural activity (Fig.  2a). This can be accomplished 
through a variety of means, but a key feature of many 
analysis methods is that they are dependent on corre-
lations within the data. The simplest and perhaps most 
common form of correlational analysis is the notion of 
a trial-​averaged response. This idea dates back more 
than a century to the original notions of neuronal tun-
ing curves and receptive fields167,168. Beyond this basic 
idea of plotting average neural responses against stimu-
lus properties169, the more general idea of computing a 
stimulus-​triggered average firing rate is commonly used 
and is often referred to as the ‘peristimulus time histo-
gram’ or developed into various elaborated forms170,171. 
These kinds of analyses do not historically treat neural 
population data any differently than a set of individ-
ual neurons. Tuning curves can be simply computed 
independently for each neuron, or by averaging over 
multiple neurons. But with new multiregion datasets, 
understanding unaveraged single-​trial responses is 
of particular interest. Fortunately, a host of modern 
correlation-​based approaches are designed to work in 
this newer setting.

Many analyses along these lines can be dichoto-
mized into those that attempt to predict neural activ-
ity from stimulus and behavioural features (often 
called ‘encoding models’) and models which predict 
stimuli and behaviour from neurons (‘decoding mod-
els’)18,21,22,34. Traditionally, encoding models attempt to 
predict the response of a single neuron at a time with 
different combinations of task features — and are fit 
using regression algorithms. In contrast, decoding 
models more obviously lend themselves to the analy-
sis of a whole neuronal population, because a simple 
regression scheme could be used to predict a single 
task feature from many simultaneously recorded neu-
rons (potentially spanning multiple areas). But over  
the past decade multiple techniques have been devel-
oped to generalize encoding models to neuronal popu
lations. Fitting encoding regression models to whole 
populations at once, rather than treating neurons inde-
pendently, has been found to generate better predictive 
performance172. In a similar way, the performance of 
encoding models can be improved by incorporating 
known information about the structure of a neural cir-
cuit and the statistics of spike trains (for example, by 
using Poisson–generalized linear models (GLM))172,173. 
Variants of this approach can be specifically constructed 
to account for interregional connectivity and unknown 
time lags between neurons in the case of multiregion 
data174–176.

This process of building, fitting and analysing encod-
ing models can reveal much about the processes that 
might generate observed patterns of neural activity 
— and has become increasingly common as available 
software packages have made such models easier to 
implement177–179. In the past, these methods were most 
frequently applied to trial-​averaged data, or even meas-
urements pooled between recording sessions or experi-
mental animals. More recently, new recording methods 
have enabled the acquisition of sufficiently large datasets 
to perform these analyses on simultaneously measured 
neurons from single sessions. As a whole, this increase 
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in scale is significant because it enables experimentalists 
to perform unbiased activity screens, by analogy with 
unbiased genetic screens that have been so useful in 
other fields of biology, here to determine which brain 
regions might be functionally implicated in a behaviour 
of interest180.

Regardless of the specific analysis approach used, 
working with large multiregion datasets presents new 
challenges. For example, if one were to rely on hun-
dreds of pairwise statistical tests to assess whether 
significant differences might exist between the firing 
patterns of neurons, it would be necessary to account 
for the chance of false positive comparisons by using a 
false discovery rate correction. In a similar way, when 
one is working with hundreds of slow, time-​varying 
neural signals, a key concern to keep in mind is that of 
‘nonsense correlations’181. As many correlation metrics 
that are commonly used assume each time point is inde-
pendent of all others (which is obviously false for filtered 
data), it is often possible to observe strong correlations 

between time-​varying neural signals and even unrelated 
time-​varying variables (for example, the stock market 
or the price of a cryptocurrency182). Without appropri-
ate control analyses, these kinds of correlations may be 
erroneously judged as significant. Simple controls where 
one signal is randomly shuffled to generate a compar-
ative ‘null distribution’ are often insufficient if there is 
clear time-​varying structure imposed in a neural data-
set by a stimulus or stereotyped behavioural response. 
Stronger controls that preserve long-​term structure, 
such as shift permutation or trial and session shuffling, 
can help mollify such concerns181. The observation 
that ongoing movements explain a large fraction of 
the variance in neural activity across the brain further 
highlights the need for careful behavioural task design 
— and analysis strategy choice183. In general, both exper-
iments and subsequent analyses should be designed 
with appropriate controls to ensure that reported 
results based on correlations do not simply occur due  
to chance.

a  Localize information

What information is encoded, and where?
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Identify population activity patterns
As datasets increased in size over the past decade, new 
approaches for describing the joint activity of thousands 
of neurons were developed. In particular, population 
firing-​rate trajectories became increasingly common 
tools for modelling the joint firing of whole neural 
populations184. This approach is quite practical, as it 
permits compression of the joint neural activity from 
even hundreds of neurons to something that can be vis-
ualized on a 3D plot (Fig. 2b, left). The most common 

means of projecting high-​dimensional neural data into 
a low-​dimensional space is principal component analysis 
(PCA) — which performs linear decomposition on the 
covariance structure between neurons to define a set of 
orthogonal axes (often called a ‘latent-​variable space’, as 
the variable representing each axis is inferred, rather than 
directly observed) where each explains as much variance 
as possible in the data. This approach is highly effective in 
neural systems. Across many brain areas and behavioural 
tasks, most of the variance in the firing of hundreds of 
neurons can be explained using far fewer dimensions 
than the number of neurons18,21,185–187. However, there 
are important limitations to this approach.

First, the process of estimating a smooth ‘neural 
trajectory’ that represents the evolution of population 
activity over time requires more specialized methods 
than standard PCA. One such approach is Gaussian pro-
cess factor analysis (GPFA) — an algorithm that simul-
taneously identifies basis vectors and defines a smooth 
neural trajectory188. In a similar way, methods based on 
canonical correlation analysis can identify shared neu-
ral dimensions between different datasets (which might 
not share any neurons), such that neural trajectories 
measured in a brain area could be aligned among dif-
ferent datasets and permit changes in neural dynamics 
to be tracked for many months or even years189 or to 
compare trajectories between different areas174. Along 
these lines, the recurrent switching linear dynamical sys-
tems model attempts to decompose neural population 
trajectories into segments that can be approximated by 
models with linear dynamics190. This approach has been 
found to identify states of neural activity that correlate 
well with manually labelled behavioural states not used 
to train the model191.

Second, performing dimensionality reduction and 
then quantification on a resultant trajectory makes two 
strong assumptions about the data. First, it assumes that 
the signal of interest is low-​dimensional (for example, 
that the joint activity of 300 neurons can be summarized 
by three time-​varying signals). Second, it assumes that 
the specific dynamics of the neural trajectory capture 
relevant features of the data under study192. This sec-
ond assumption depends on the strong hypothesis that 
smooth firing rate dynamics, rather than features of 
precise spike timing, contain the neuronal population 
codes of interest. We know that this assumption is often 
at least partially wrong, as single-​neuron spike timing 
codes that have been observed in various experimen-
tal settings are eroded by most common methods for 
smoothing spike trains into firing rates (which often 
assume Poisson-​like spiking statistics that do not nec-
essarily match the data)193,194. Nevertheless, dynamical 
models that make these assumptions constitute an excit-
ing area of computational neuroscience research because 
there is much emerging evidence that the evolution of 
these neural trajectories over time may indeed describe 
certain neural computations195.

However, interesting structure apparent in neural 
trajectories based on just a few dimensions need not 
remain in the full high-​dimensional dataset, and other 
unappreciated features may exist in the data beyond 
a single trajectory184. One solution to this problem is 

Fig. 2 | Approaches for analysing multiregion recording data. There are many 
approaches for analysing and interpreting multiregion neural data, each of which  
can address different types of questions. a | What information is being represented by 
neurons in a dataset? Questions of this nature can be studied using regression models 
that try to model neural data as a weighted sum of other variables, including information 
about animal behaviour, experimental stimuli, information about neuronal identity and 
position, and signals from other neurons. In the unbiased activity screen example (left), 
the weights obtained from a model might represent the brain areas that are most useful 
for predicting information about an animal’s behaviour during a task. In other cases 
(middle), the product of another set of regression weights and neural data may be used 
to make behavioural predictions (for example, to predict which waterspout the animal 
might lick to obtain a reward) or compute a neural tuning curve to show the average 
response of a neuron to a stimulus (right). The algorithm used to compute these weights 
is often some form of linear regression, such as a generalized linear model (GLM),  
and may rely on spike-​triggered averaging (STA) to reveal the stimulus that a neuron 
maximally responds to or may rely on computing a trial-​averaged response (often called  
a ‘peristimulus time histogram’ (PSTH)) to reveal the neural response to a specific stimulus. 
b | What is the regularity and prominence of different patterns of neural population 
activity? To study this question, dimensionality reduction techniques can be used to 
compress the activity of hundreds of neurons into a few prominent factors that can  
then be used to represent the joint activity of a neural population as a low-​dimensional 
trajectory. These algorithms typically attempt to approximate a data matrix of neurons 
over time (N × T ) as the product of a matrix of neuron weights over factors (N × D) and a 
matrix of factors over time (D × T ), where the number of factors (D) is typically set to be 
some number less than N (often 2–5). This can be accomplished (in use of many algorithms) 
with different constraints on the features that must be present in the weights and factors 
(which are sometimes formulated in slightly different ways and may also incorporate 
information about behaviour, stimuli and how neural signals evolve over time). These 
methods, which are described in the main text, include principal component analysis 
(PCA), Gaussian process factor analysis (GPFA), canonical correlation analysis (CCA), 
linear discriminant analysis (LDA), coding direction analyses, partial least squares regression 
(PLS), targeted dimensionality reduction (TDR), preferential subspace identification (PSID) 
and recurrent switching linear dynamical systems (rSLDS). Projecting the neural data into  
a low-​dimensional space defined by factors can be used to construct neural trajectories  
that can be visualized, quantified and used to compare the joint activity of a neural 
population across different trials and behavioural conditions (the green dot represents 
trial onset, the yellow dot represents movement onset and the red and blue lines 
represent schematic trial-​averaged population activity as a mouse prepares to move 
right or left, respectively; left panel). Specific factors may be constructed to maximally 
separate population activity trajectories during different behavioural conditions  
(middle; format matches left panel). Many of these models can also be used to predict how  
a neural population trajectory might evolve in the future — in the absence of additional 
neural data (rightmost panel; general form of trajectory matches left panel). c | How do 
neurons interact with each other both within and between different brain areas? This  
can be studied by using algorithms such as latent factor analysis via dynamical systems 
(LFADS) and current-​based decomposition (CURBD) to fit network models to datasets 
consisting of multiregion neural data, information about animal behaviour and sensory 
stimuli. The fitted network models can then be used to simulate how neural data might 
be generated by novel sets of stimuli or to generate unique behavioural outputs. Unlike 
with a real neural dataset, no element of these models is unobservable. Therefore, direct 
analysis of these models as a surrogate for the neural data of interest can be used, for 
example, to quantify the direction and strength of interareal communication between 
distinct brain regions (left). Communication strengths are indicated by the widths of the 
arrows between the areas. Use of these models also permits simulation of new experimental 
scenarios (for example, the behavioural and network-​wide effects of silencing a set of 
neurons; right).
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to use complementary analyses that operate on many 
more dimensions than were visualized, or on the 
full-​dimensional neural space128,162,185,196. Empirical 
methods also exist for testing whether novel claims 
about population codes (for example, based on fitting 
latent-​variable models) are potentially explainable by 
known features of single-​cell response properties197.

So what is the relevant dimensionality of the neu-
ral activity in a given brain region? This parameter is 
likely to depend on the neural structure under study 
(for example, sensory versus motor) and the complexity 
of the behaviour186,192, as well as technical details such 
as the temporal resolution of the data acquired (for 
example, resampled second-​long time bins versus short 
single-​spike time bins). To approach these questions, 
other dimensionality reduction schemes (besides PCA) 
may be of use, which quantify the differences in neural 
activity between distinct experimental conditions — 
regardless of whether they explain most of the variance 
in the data (which is the goal of PCA). For example, 
neurons across the dorsal cortex encode motor-​related 
information such as the current location of a reward, 
but this explains only a small fraction of the total vari-
ance in the data23. In this case, PCA is inappropriate, and 
using it to draw low-​dimensional neural trajectories may 
not yield any obvious differences in population activity 
between different experimental conditions.

What alternatives to PCA are available? One approach, 
linear discriminant analysis, seeks to find an axis  
(the ‘linear discriminant’) that best separates data points 
on the basis of some covariate, such as lick direction. This 
approach works for arbitrary numbers of conditions, but 
if there are only two conditions to separate in the data 
(for example, lick left or lick right), the linear discri-
minant can be approximated by simply computing the 
vector difference between mean activity under the two 
conditions. This is sometimes referred to as the ‘cod-
ing direction’198. Similarly, an algorithm called ‘partial 
least squares regression’ is a common approach23,199,200 
for jointly achieving two goals: (1) finding a low- 
dimensional representation of the data that explains 
much of the variance in the data and (2) using the data 
in that low-​dimensional space to solve a regression prob-
lem (that is, to separate trajectories from different exper-
imental conditions). Related algorithms that attempt to 
jointly find a hidden or ‘latent’ state space that explains 
variance in the data but also separates the data along 
experiment-​defined conditions include demixed PCA, 
tensor component analysis and targeted dimensionality 
reduction201–203. A recent method, preferential subspace 
identification (PSID), has developed a dynamical model 
for identifying low-​dimensional neural trajectories that 
also incorporate behavioural information, using meas-
urements of the animal’s behavioural dynamics to aid 
in the identification of task-​relevant neural dynamics204. 
Interestingly, a nonlinear variant of PSID (which relies 
upon recurrent neural networks (RNNs) used in deep 
learning models) performs similarly to the linear vari-
ant of the algorithm in mapping cortical activity into a 
latent space. Only behavioral decoding is significantly 
improved by the use of a nonlinear model — suggesting 
that cortical dynamics may be readily explainable by 

linear dynamics, but that transformations from cortical 
activity to behavior may be particularly nonlinear205.

More work is required to further generalize these 
approaches to explicitly multiregion data. One key issue 
is that many current approaches treat neurons identi-
cally, without regard for known differences between 
neurons residing in different brain areas or those with 
different gene expression profiles. Alternatively, the 
neural activity within each region is reduced to just 
a single signal (or a small number of signals per unit 
area). This use of a single time-​varying scalar for cou-
pling areas makes it easier to know that interregional 
interactions may be occurring — and could enhance the 
experimental use of closed-​loop interventions in health 
and disease206 but comes at the expense of knowing what 
information might actually be transmitted207. But it is 
likely that the mechanisms that govern information flow 
between areas in the cortex are not the same everywhere. 
Thus, multiregion models that treat the neural activity 
from different brain regions distinctly are necessary — 
especially since we know there are clear anatomical and 
physiological distinctions between brain regions. For 
example, the motor cortex and the spinal cord are cou-
pled via many ascending and descending neural path-
ways, but it seems unlikely that either region forms the 
majority of the inputs to the other under any behavioural 
circumstance; therefore, using only a single set of latent 
factors to represent a dataset comprising recordings 
from both areas would make little sense. Developing 
richer models that can incorporate this kind of informa-
tion will be critical for building robust brain–machine 
interfaces and neural decoding algorithms that achieve 
high performance in complex, real-​world scenarios — in 
addition to guiding us towards a better understanding 
of the brain.

Quantify network interactions
Beyond quantitatively describing population codes 
within distinct brain areas, a second-​order set of ques-
tions seeks to understand how brain areas communicate 
with each other. New analyses will be important for iden-
tifying the mechanisms of interregional communication, 
and for testing several major hypotheses regarding cor-
ticocortical communication208. Three main mechanisms 
have been proposed. First, correlations between the 
spike trains of neurons in different areas seem to facil-
itate information transfer209,210. Second, coherent oscil-
lations, particularly in the gamma band, may enhance 
information transmission by cortical neurons211,212. 
Third, interareal communication (both between cortical 
areas and in cortical–subcortical pathways) can occur 
within a ‘communication subspace’ such that projection 
neurons usually fire in a pattern whereby their net effect 
on a downstream area cancels out (that is, firing in the 
null space of the postsynaptic area) — except when they 
are actively broadcasting information213,214.

Each of these mechanisms, in addition to the oper-
ation of potential ‘gate’ neurons in pathways beyond 
the cortex (for example, ‘omnipause’ neurons in the 
brainstem that gate descending inputs during eye 
movements), likely plays a role in different behavioural 
circumstances215, and may now be accessible using 
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multiregion cellular-​scale methods. This question of 
how areas communicate is intertwined with the question 
of what information is communicated. However, it is still 
very much an open question whether or how upstream 
areas ‘command’ downstream areas216 or whether some 
interareal connections may influence other areas in a 
subtler manner, for example, via gain regulation217.

Methods from network analysis and topology may 
be applied to multiregion neural datasets to address 
these questions. Either simple correlation-​based metrics 
or other, related metrics such as Granger causality, or 
information theoretic quantities, can be used to quan-
tify directional dependencies between individual neu-
rons or areas, and then network models can be defined 
using either neurons or brain areas as nodes and with 
the chosen metric defining functional connections 
between them. These network models may be useful to 
develop schemes for controlling the brain, or for better 
understanding its function218. Indeed, a whole host of 
network models at different levels of complexity may 
be applied for better understanding different aspects of 
interregional communication219.

However, multiregion neural datasets present a 
particular problem that hinders many kinds of net-
work analyses — the fact that mammalian multiregion 
recording techniques afford only the ability to incom-
pletely sample from a subset of neurons in a subset of 
brain areas. One emerging approach is to use these 
incomplete multiregion neural datasets (which have not 
measured every relevant activity parameter) for train-
ing recurrent neural network (RNN) models that can 
be then perturbed and analysed in silico (Fig. 2c). While 
this core idea of building detailed computational simu-
lations of neural circuits can be taken to highly detailed 
and biophysically realistic levels220, these RNN-​based 
methods usually seek to model features of neural and 
behavioural responses by using modern deep learning 
methods, rather than by creating explicit models of bio-
logical neurons221–231. For example, in the widely used 
latent factors analysis via dynamical systems (LFADS) 
framework, individual artificial units do not represent 
individual biological neurons221–224. Rather, as Sylwestrak 
and colleagues recently demonstrated224, LFADS can be 
used to directly model the underlying dynamical sys-
tems corresponding to distinct biological neural popula-
tions. Another approach (current-​based decomposition) 
maintains a one-​to-​one correspondence between bio-
logical neurons and artificial units during model fitting, 
but this procedure is used to generate a 1D time-​varying 
interaction signal between different brain areas (regard-
less of the number of neurons fitted per area)230. Even in 
the case of incomplete sampling from the brain, these 
approaches fit available multiregion neural data to ana-
lytically tractable ‘surrogate’ models that can be used to 
generate testable hypotheses for future experiments.

This approach of building a surrogate model that 
can generate known neural dynamics is also appeal-
ing because RNN models have become increasingly 
amenable to detailed analysis. For example, specific 
low-​dimensional dynamical motifs can be reliably identi-
fied in trained RNN models as learned solutions to many 
common language processing and neuroscience-​inspired 

tasks225–228. However, some of the analytical tools used 
to find these motifs are difficult to apply to real neu-
ral datasets. For example, dynamical fixed points and 
basins of attraction may be hard to identify in cortical 
areas because the area-​specific recurrent dynamics are 
usually happening in the presence of strong external 
input from other, often unobserved, brain areas or sen-
sory systems229. But surrogate neural models, such as 
current-​based decomposition230, that explicitly model 
multiple brain areas (which need not be at cellular resolu-
tion) may offer a path forward here: a multiregion RNN 
model can be fit to a large neural dataset and then ana-
lysed in situations wherein external inputs to a brain area 
of interest are disabled, or perturbed in other ways223,231. 
Optogenetic manipulations could then be used to 
experimentally validate a tractable set of predictions  
made by the model.

At a more abstract level, RNN models that gen-
erate behavioural data can be used to test different 
neural analysis strategies. A combined experimental 
and computational article that validated this analysis 
paradigm emerged from the study of larval zebrafish, 
where single-​cell neural activity can be measured almost 
comprehensively from the entire brain and spinal cord45. 
By the fitting of an RNN to activity measurements from 
most neurons in the zebrafish brain, distinct changes in 
the coupling strength between the habenula and raphe 
nucleus could be seen as fish entered a depression-​like 
state, passively rather than actively coping with a stressor, 
in the process clearly identifying a circuit previously 
hypothesized to be involved in depression and passive 
coping. Importantly, because this approach processes 
data from all regions across the brain in an identical 
way, this brainwide analysis was not biased towards any 
particular answer. At a less comprehensive level, multi
region RNNs have also been used to reproduce inter
regional network dynamics within both the mammalian 
cortex and subcortical areas198,232–234. Finally, causal tests 
will be crucial in validating these models. Recent work 
experimentally perturbed information flow between 
two areas of the visual cortex (V1 and LM) by inhib-
iting activity in one area, at different time lags relative 
to a visual stimulus235; influence between the areas was 
observed to vary over time — much analogous to how 
recently developed models have been used to estimate 
time-​varying ‘currents’, or lagged latent variables, that 
link brain areas230,236.

Moving forward, a key question is how complete the 
neural population recordings must be to build a model 
of the type described here that can accurately recapit-
ulate population dynamics. Explicit incorporation of 
neuronal cell-​type information to delineate subpopula-
tions may be useful in this way. Of similar importance 
is a clear means of identifying the number of brain areas 
present in a dataset. Changing the definition of a brain 
region in this context will certainly influence any meas-
ures of interregional communication219. As discussed 
earlier, using a common reference atlas framework to 
delineate gross anatomical areas is an important first 
step. But when one is building an RNN model, is it best 
to try to learn regional groupings between neurons from 
the data themselves? Or must granular anatomical labels 
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(for example, cortical layer within an area instead of 
just areal identity) be applied230,231? To some extent, the 
answer to these questions will depend on the biological 
questions of interest, the regions being studied and the 
behavioural state of the animal. However, it is exciting 
to consider the idea that as this framework increases in 
sophistication, single models may be able to accurately 
model neural activity during complex behaviours, as 
well as during a variety of perturbations to the relevant 
neural circuitry (for example, activation or silencing of 
different brain areas) or behavioural setting (for exam-
ple, across different environments). If this potential can 
be realized, studying RNN models as a surrogate for new 
experimental data will be a tremendously powerful tool 
for systems neuroscience.

Recent findings and future directions
Initial studies applying multiregion recording meth-
ods in different behavioural contexts have begun to 
demonstrate the types of findings that can result from 
a broad, brainwide perspective. At least three major 
themes have emerged (Fig. 3). First, many behavioural 
features and stimuli have widespread neuronal popula-
tion representations, and are decodable from neuronal 
dynamics in seemingly surprising locations across the 
brain. Second, the location and content of multiregion 
neural representations and dynamics depend on behav-
ioural context. Third, specific interregional patterns 
of synchrony and asynchrony appear to be important 
features of behaviourally relevant neural dynamics.

Widespread representations
One simple and powerful advantage of multiregion 
recording lies in surveying activity across many regions, 
in an unbiased way — thus including areas not expected 
to be particularly involved in a given behaviour. As a 
consequence of applying this approach, many recent 
studies have revealed that neural representations for 
various behavioural features are not confined to spe-
cific individual brain regions. For example, ongoing  
motor behaviour is represented not only in anterior motor  
areas — as expected — but also in posterior areas such 
as the primary visual cortex21,22,237. During a visual 
task, neurons in nearly all of 42 regions electrophysi-
ologically recorded across the brain were observed to 
respond non-​specifically when mice initiate an action34. 
Furthermore, even specific history-​guided motor plans 
are encoded widely across the cortex23. Finally, sensory 
evidence appears to modulate activity in the secondary 
motor cortex in the absence of movement238. Whether 
these widespread signals subserve learning, context set-
ting, distributed computation or even no behaviourally 
relevant purpose at all remains an important question 
well suited for future causal investigation.

Another important takeaway message from recent 
analyses of multiregion data is that neurons with similar 
trial-​averaged activity patterns often display very differ-
ent single-​trial combinations of cognitive and move-
ment variables21. For example, in one recent analysis of 
trial-​averaged cortex-​wide imaging data, there was no 
clear dependence of correlation strength over space — 
that is, pairs of neurons at near and far distances had 

high correlations. In contrast, single-​trial correlations 
computed on the same dataset exhibited more localized 
structure23. Similarly, in a different experimental setting, 
spike-​triggered maps (which are inherently trial aver-
aged) from simultaneous electrophysiology and OEG 
displayed widespread cortical activity motifs related to 
the activity of individual thalamic or cortical neurons239. 
Thus, population-​level signatures of behaviour are not 
only widespread; these signatures also manifest them-
selves differently on analyses of single-​trial versus 
trial-​averaged neural data.

What causal role do these widespread representa-
tions of behaviour play? Optogenetic interventions 
have the potential to provide important insight. As with 
multiregion recording, optogenetic manipulations have 
progressed to ever wider fields of view128 — even to 
cortex-​wide scales23. Importantly, though, since brain-
wide activity patterns can arise from activity in localized 
populations of neurons (for example, sensory neurons, 
or neuromodulatory neurons that correlate with brain 
states such as arousal240), investigators can likewise read-
ily generate naturalistic brainwide patterns of activity 
with even focal optogenetic interventions (if properly 
targeted). An example is a study using Neuropixels 
paired with optogenetics in which focal stimulation of 
input to the neurons of the subfornical organ with a 
single deep fibre optic triggered brainwide naturalistic 
internal representations of thirst, and of seeking water 
when thirsty18. These experiments illustrate how optoge-
netic interventions operate in ways fundamentally anal-
ogous to gain-​of-​function or loss-​of-​function genetic 
interventions (for example, gene knock-​in/knockout, 
RNAi/short hairpin RNA and CRISPR–Cas genome 
editing) in other realms of biology241, wherein precise 
highly local perturbations provide insight into the global 
causal underpinnings of complex system function.

Context dependence
Another key benefit of multiregion investigation is the 
enhanced ability to compare neural dynamics within 
different contexts. These contexts can include task 
difficulty, sensing strategy and behavioural state242. 
By simultaneously measuring activity across the brain, 
one can survey the context-​dependent involvement and 
interactions of many regions and ensure that regional 
differences are not due to uncontrolled differences in 
context or behaviour that might occur with asynchro-
nous recordings. Moreover, by recording joint activity 
across behavioural conditions, one can disentangle 
potentially complex behavioural variables that confound 
interpretation of population neural activity.

A number of studies have discovered patterns of 
multiregion activity that distinguish scenarios with 
similar stimuli or actions but differing higher-​level 
context. For example, the difficulty of a task can alter 
how identical stimuli are processed, with widespread 
multiregion activity ramps and decreased correla-
tion across the cortex during a more complicated 
evidence-​accumulation task versus a simpler explicit 
visual response task233. Moreover, use of optogenetic 
inactivation to silence activity in single regions across the 
dorsal cortex influenced performance on the evidence 
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Fig. 3 | New perspectives arising from multiregion recording. a | Example 
insights thus far into brainwide activity. Widespread nature of state and 
stimulus representations, here shown as widespread encoding of different 
actions (left; as in23). Context dependence of interregional dynamics, here 
shown as different patterns of regional dynamics depending on the 
behavioural strategy (such as an active or a passive detection strategy, as 
in243; middle). Roles of synchrony, here shown as desynchronized rhythmic 
activity between the retrosplenial cortex (red oscillations) that are 
decoupled from activity in other cortical regions (blue oscillations) that was 
observed to be elicited by ketamine, a dissociative drug (as in180; right).  
b | An unbiased activity screen using optoencephalography widefield 
imaging reveals a ketamine-​elicited (50 mg kg−1) rhythm localized to one 
cortical region, yielding desynchrony between the retrosplenial cortex and 
other cortical regions. Ketamine’s effect is an important example of the 
value of multiregion imaging since the uniqueness of the effect seen in  
the retrosplenial cortex would not have been otherwise appreciated, and 
also could not have been predicted. This effect is evident in the top row as 

a sinusoidal pattern of activity in the retrosplenial cortex after infusion (red 
trace) that is not correlated with the post-​infusion activity of other regions. 
In the bottom row, this is exhibited as a peak at 1 Hz in the spectral power of 
the activity after infusion (red trace). dF/F is the baseline-​corrected change 
in fluorescence, blue traces are for before ketamine infusion and red traces 
are for 10 min after ketamine infusion. c | Recordings with multiple 
Neuropixels silicon-​based probe electrodes further reveal ketamine-​elicited 
correlation between the retrosplenial cortex (RSP) and the laterodorsal 
thalamus (LD), and inverse correlation between the retrosplenial cortex and 
the anteromedial thalamus (AM). The inset illustrates a Neuropixels 
silicon-​based probe (version 1.0) with a dense arrangement of electrodes 
that enables recording from many individual neurons across multiple 
regions of the brain (indicated by colours that correspond to the data shown 
on the right). See ref.180 for further information on recording and analysis 
details. PSD, power spectral density. Panel b reprinted from ref.180, Springer 
Nature Limited. Panel c adapted from ref.180 and ref.151, Springer Nature 
Limited.
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accumulation task. However, performance on the sim-
pler task only depended on activity in a few visual cor-
tical regions. The representation of a stimulus can also 
change depending on the strategy used by the animal 
for sensing the stimulus, as in one example where the 
locus of short-​term memory encoding in the dorsal cor-
tex changed depending on whether the mouse used an 
active or a passive whisking strategy to identify a tex-
ture, and targeted optogenetic inactivation could even 
induce the mouse to use a different strategy243. The 
temporal sequence of stimulus presentation can also 
impact multiregion neural representation, as during a 
delayed non-​match to sample task wherein the second-
ary somatosensory cortex was sensitive to whether the 
second stimulus matched the first stimulus and appeared 
to relay recalled information to primary somatosensory 
regions141. Last, the degree of agency that an animal 
has over a stimulus can influence multiregion activity. 
Using a multiregion brain–machine interface, one study 
found that when the position of a cursor was controlla-
ble, higher visual areas were more active, cursor position 
was more decodable from population neural activity and 
units exhibited increased correlation with cortex-​wide  
activity244.

The behavioural state of an animal can also influ-
ence multiregion activity. For example, when an animal 
locomotes, units in the primary visual cortex become 
more strongly coupled to motor and local visual cortical 
regions, whereas retrosplenial units become less locally 
coupled159. Task engagement can also globally influence 
cortical activity, eliciting desynchronization and per-
sistently decreased low-​frequency (3–6-​Hz) activity245. 
Finally, motivational state, such as whether a mouse is 
thirsty or sated, impacts global activity patterns, lead-
ing to a brainwide ‘initial condition’ that influences 
the transformation of sensory input into behavioural 
output18.

Synchrony and desynchrony
Perhaps one of the most valuable aspects of simultane-
ous multiregion recording is the capability to observe the  
details of correlated activity across the brain. Recording 
in two regions at the same time, such as the medial 
prefrontal cortex and hippocampus246–248, medial pre-
frontal cortex and ventral striatum249, frontal and 
visual areas34, or secondary motor cortex and poste-
rior parietal cortex250 has already given rise to many 
synchrony-​related insights, including into neuropsychi-
atric symptoms such as anhedonia249; indeed, synchrony 
and desynchrony have long been hypothesized to be 
important in neurobehaviourally important conditions 
such as schizophrenia, autism, depression and dissocia-
tive states. The advances now making it feasible to record 
from many more than two regions (for example, record-
ings with six simultaneously deployed Neuropixels 
probes revealing hierarchical structure in multiregion 
functional connectivity at the cellular level33, or widefield 
imaging251) promise an expansion of this perspective, 
both for basic science understanding and for insight into 
neuropsychiatric disorders. Further evidence for altered 
functional connectivity has been observed with multi
region recording in depression-​related states, such as 

during recording from seven regions in a mouse model 
of stress response, which yielded multiregion activity 
factors that could serve as signatures for discriminating 
behavioural conditions252. Similarly, recording from five 
regions in a model of autism spectrum disorder yielded 
the discovery of diminished social stimulus-​induced 
increases in coherence between the cingulate cortex, 
thalamus and nucleus accumbens253. Additionally, multi
region recording led to the discovery of a key role for 
desynchronized dynamics in the clinically important 
state of dissociation, whereby administration of dissocia-
tive drugs such as ketamine elicited a 1–3-​Hz oscillation 
localized to the retrosplenial cortex (but not other dor-
sal cortical regions), a brainwide disappearance of most 
correlations with the retrosplenial cortex and an uncou-
pling of activity between laterodorsal and anteromedial 
thalamic regions180. Importantly, the mere presence of a 
slow oscillation in the retrosplenial cortex was not the 
distinguishing factor, but rather the spatial restriction 
of the oscillation and its desynchronization from other 
cortical regions was the distinguishing factor. Indeed, 
these multiregion recording observations were critical 
for informing the design of causal optogenetic and gene 
knockout experiments that pinpointed the role of the 
retrosplenial oscillation in dissociation-​like behaviour, 
guiding analysis of multiregion intracranial electrophys-
iological recordings in the dissociating human brain 
and the discovery of similar oscillations in the homol-
ogous human retrosplenial and deep posteromedial 
cortical regions.

Looking forward, there are many opportunities for 
investigating the roles of synchrony in disease states. 
For example, since altered interregional brainwide com-
munication has been long hypothesized to be relevant 
to the symptoms of schizophrenia and other psychotic 
states, it will be interesting to test whether multire-
gion relationships are altered in preclinical or clinical 
states with perceptual alterations, including during  
administration of psychosis-​inducing pharmacological 
agents.

Conclusion
The mammalian brain is a complex system composed 
of many interdependent parts. In such systems, macro
scopic properties emerge from properties and inter-
actions of the individual parts of the system, and the 
state of each part depends on the state of the others. 
Neuroscientists may now draw upon new methods to 
investigate how dynamics of the whole brain and the 
behaviour of the animal depend on interactions among 
elemental parts. To advance this goal, here we suggest 
that it will be crucial to see the parts and the whole at 
the same time — in particular, by measuring cellular 
activity in multiple brain regions at once. This inte-
grative approach, encompassing optical, electrophys-
iological and computational innovations, enables new 
types of observations, such as measurements of distrib-
uted population codes and of interregional synchrony, 
which are inaccessible to methods that probe one region 
or cell at a time. Especially when paired with optoge-
netic control241, multiregion recording provides a vital 
source of information on naturally occurring brainwide 
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activity patterns that can be screened for in an unbi-
ased fashion180, and then tested for causal significance 
in physiology and behaviour. Ultimately, by using the 
experimental and computational approaches discussed 
here, we have the opportunity to see both the forest 

and the trees of the brain — emergent brain-​spanning 
states and their constituent cellular dynamics — at the  
same time.
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