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Abstract

This document provides supplementary information to
‘Aperture interference and the volumetric resolution of light
field fluorescence microscopy’. We provide more informa-
tion about: the derivation of the defocus OTF, additional
ALF-ring schemes, frequency space invertibility, the for-
ward model and reconstruction algorithm, and Monte Carlo
simulations for calculating noise thresholds. In addition,
we use this space to describe our implementation and cal-
ibration in more detail and to include an expansion of the
results shown in the primary document.

The 3D defocus OTF

In two dimensions, the OTF is simply the 2D auto-
correlation of the coherent amplitude transfer function,
ATF (kx, ky), which is the Fourier transform of the coher-
ent point spread function (the square of which is the inco-
herent point spread function). Ignoring the phase associ-
ated with the pupil function of the microscope objective,
ATF (kx, ky) is equivalent to the aperture mask function,
and thus the 2D OTF is the autocorrelation of the aperture
[3, 4].

OTF (kx, ky) = Fx,y{PSF (x, y)} (1)

= Fx,y{|F−1
kx,ky

{ATF (kx, ky)}|2} (2)

= ATF (kx, ky) ? ATF (kx, ky) (3)

where PSF (x, y) is the incoherent point spread function.
In three dimensions, the OTF is the 3D autocorrela-

tion of the generalized aperture [4]. The generalized aper-
ture is derived easily from the depth dependent or defo-
cused aperture, ATF (kx, ky; z), which incorporates the
phase associated with the propagation of light as it defo-
cuses (which with the Fresnel approximation yields the well

known quadratic phase associated with defocus) [3]:

ATF (kx, ky; z) = ATF (kx, ky)ei2πz
√
k2−(k2x+k

2
y) (4)

Fresnel
≈ ATF (kx, ky)ei2πkze−iπ

z
k (k2x+k

2
y)

(5)

The generalized apertureATF (kx, ky, kz) is the Fourier
transform along the axial direction of ATF (kx, ky; z).
From Eq. 4, using the Fourier shift theorem:

ATF (kx, ky, kz) =

∫
ATF (kx, ky; z)e−i2πzkzdz (6)

=

∫
ATF (kx, ky)ei2πz(

√
k2−k2x−k2y−kz)dz

(7)

= ATF (kx, ky)δ(kz −
√
k2 − k2x − k2y)

(8)

The generalized aperture can be visualized as the projec-
tion of the 2D aperture onto the surface of a spherical shell
in (kx, ky, kz) space, also known as the Ewald sphere. The
radius of the shell is determined by the wavelength of light,
and represents the fact that, in order to satisfy Maxwell’s
equations, light of wavelength λ propagating in a medium
of refractive index n is required to have a specific total mo-
mentum, k =

√
k2x + k2y + k2z = 2πn/λ.

Thus, while we originally defined the defocus OTF as
the 3D Fourier transform of the incoherent depth-dependent
point spread function,

OTF (kx, ky, kz) = Fx,y,z{PSF (x, y, z)} (9)

= Fx,y,z{|F−1
kx,ky,kz

{ATF (kx, ky, kz)}|2}
(10)

by following the same logic that the 2D OTF can be derived
as the autocorrelation of ATF (kx, ky), it can be shown that
the 3D defocus OTF is equivalent to the autocorrelation of



the generalized aperture ATF (kx, ky, kz) [4], as schema-
tized in the top of Fig. 2 of the main paper:

OTF (kx, ky, kz) = ATF (kx, ky, kz) ?3 ATF (kx, ky, kz)
(11)

ALF-ring
One additional sequence, based on ALF-rings, is what

we call the ALF-ring. Here, instead of using all of the grid
points and rings with varying diameters, we use only one
ring, half the diameter of the aperture, centered a quarter-
aperture-diameter from the optical axis and rotated to dif-
ferent positions around the optical axis. This simplifies the
hardware implementation, while still enabling us to capture
the highest achievable axial frequencies, even if some lat-
eral frequency is given up.

Nonoverlapping ALF-ring simulations The ring-based
aperture masks could also be designed to avoid any over-
laps. This could enable single-snapshot implementations
that exclude overlapping aperture supports. In Fig. 1, we
perform simulations showing that it is possible to achieve
the benefits of ALF, even with a design that never reuses
any regions of the aperture during a sequence of aperture
masks.

Frequency space invertibility
Here we derive the normalized frequency domain mea-

surement matrix used in computing the invertibility of an
aperture mask sequence, and we discuss the general idea of
volumetric invertibility.

Starting with OTF (k) from Eq. 11 in the main paper,
we define the transfer function, H(q)(k) for each mask q,
by normalizing OTF (q) and then scaling according to the
amount of light transmitted through the corresponding aper-
ture mask.

H(q)(k) :=
OTF (q)(k)

OTF (q)(0)
·
∑

(ATF (q)(kx, ky))∑
(ATFNA(kx, ky))

(12)

where ATF (q) is the aperture mask profile, and ATFNA
represents an open aperture with the maximum numerical
aperture. This normalization enables us to make a connec-
tion with actual photon counts, as described in the main
body of the paper.

Next, define Ṽ ∈ Rnk to be the vectorized 3D fre-
quency space representation of the specimen discretized
into nk = nkx×nky×nkz elements. DefineBq ∈ Cnk×nk

to be a diagonal matrix form of Hq from Eq. 12. Define
P ∈ Rnkxnky×nk as a matrix operator that sums along kz
for each (kx, ky). If N is the number of aperture masks in
a sequence, the measurement matrix M ∈ CnkxnkyN×nk

.465 diameter
.465 diameter,

non-overlapping

Figure 1. Simulation results using ALF-ring, and ALF-ring where
the masks are chosen such that they never overlap (and thus each
point in the aperture is open for only a single mask in the se-
quence). (top) ALF-ring aperture mask patterns, where each color
represents a mask opening. (bot) Maximum intensity projections
(MIPs) of volume reconstructions of the same test volume as in
Fig. 6 of the main paper. The volume (1024 1024 15) consisted
of non-overlapping test resolution bars every third slice, with 6.67
µm between each slice.

is a stacked matrix of blocks PB1 to PBN . We measure
Ĩ = MṼ where Ĩ is the Fourier transform of the sensor im-
ages. As described in the main body of the paper, we then
use the singular value decomposition of M to describe the
invertibility of the acquired data.

The sequence of aperture masks should sample all pos-
sible lateral and axial spatial frequencies, but we also want
individual samples that finely tile the 3D frequency space.
Our goal is to sample the 3D volume into voxels; similarly,
we can think of sampling the 3D frequency space into ‘fre-
quency voxels’. In the following, we explore how this can
be accomplished with a sequence of aperture masks. As
schematized in Fig. S2, we can use the Fourier slice the-
orem to understand how a 2D sensor samples the defocus
OTF. The key message is that kz values for a given kx are
mixed together; importantly, however, only those kz val-
ues at a given kx value that are transmitted by the defo-
cus OTF for that specific aperture mask are mixed together.
Further, as illustrated in the bottom of Fig. 2, sampling kz
values individually is what yields unambiguous volumet-
ric information. This is why a single image taken with a
fully open aperture provides no depth information, whereas
a sequence of aperture pinhole images does. We note that
this is related to concepts from Magnetic Resonance Imag-
ing (MRI), which directly samples in frequency space: in



Sensor slice corresponds to projection in frequency domain
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Axial spatial frequencies should be sampled individually to minimize ambiguity
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Figure 2. (top) A planar image sensor measures a slice of the 3D
volume, convolved in 3D with the 3D PSF. In Fourier space, this
is equivalent to multiplying the spectrum of the volume with the
defocus OTF, integrating along the direction perpendicular to the
sensor, and discretizing along the direction of the sensor. The re-
sult is the Fourier transform of the sensor image, which samples
part of the 3D spectrum of the volume. In the illustrated case,
for each kx value, all kz values are blurred together. (bottom) On
the left: a fringe pattern in the primal domain is equivalent to two
points in the frequency domain that are symmetric about the ori-
gin. Sampling a 3D volume is equivalent to knowing the weight
assigned to each of these fringe patterns. If two frequency domain
components are combined into one measurement, but the ratio of
their contributions is unknown, then there will be ambiguity in the
recovered volume. This is illustrated by different fringe patterns
that could arise from different ratios of each component.

particular, it is well known that increasing the resolution of
one’s frequency domain measurements increases the axial
field of view of the recovered volume [5]. Here too, finer
sampling of axial frequency domain measurements enables
recovery of information across a larger axial field of view.
The conclusion is that we want to choose either aperture
masks that transmit a small range of kz values for each kx,
or choose a sequence of aperture masks such that if they do
measure multiple kz values for each kx, the measurements
of different masks overlap, allowing us to recover fine fre-
quency domain sampling through demultiplexing.

Forward model and reconstruction

Forward model and vectorization The following de-
scribes how we computationally merge the information
recorded in the images of an aperture mask sequence. The
forward model of incoherent fluorescent image formation
can be described by a filtering in the pupil plane with the
2D incoherent OTFz(kx, ky) for each depth z followed by
an axial projection on to the camera sensor. The incoher-
ent OTF for a given aperture mask with binary, numerical
aperture-limited amplitude function α(kx, ky) is calculated

via the ATF and incoherent PSF :

ATFz(kx, ky) = eikz exp
(
−iπλz(k2x + k2y)

)
α(kx, ky)H(kx, ky)

(13)

PSFz(x, y) = |F−1
kx,ky

{ATFz(kx, ky)}|2 (14)

OTFz(kx, ky) = Fx,y{PSFz(x, y)} (15)

where k = n2π/λ is the magnitude of the wave vector and

H(kx, ky) =
√

cos(sin−1(λ(k2x + k2y)1/2)) is an apodiza-
tion function defined by the Abbe sine condition [2].

For a specimen volume with intensity profile V (x, y, z),
and aperture mask q with OTF (q)

z (kx, ky), the correspond-
ing image on the sensor I(q)(x, y) is described as

I(q)(x, y) =

∫
z

F−1
kx,ky

{OTF (q)
z (kx, ky)Fx,y{V (x, y, z)}}dz

(16)
For computing purposes, we work with a model in which

the sample volume is discretized into nv = nx × ny × nz
voxels, and the camera sensor is (naturally) discretized into
np = nx × ny pixels. Our goal is to reconstruct a 3D vol-
ume from a sequence of Q images corresponding to each
of the Q aperture masks with the stochastic forward image
formation model:

I ∼ Pois(Ax + b), (17)

where I ∈ RnpQ is the vectorized stack of sensor images, x
∈ Rnv is the vectorized discrete sample volume, b ∈ RnpQ

is the vectorized background signal, and A ∈ RnpQ×nv is
the measurement matrix of the system, such that each entry
Ai+(q−1)np,j is the intensity contribution of voxel j onto
pixel i of aperture q in the sequence of Q apertures. This
model assumes Poisson-distributed sensor measurements,
which is appropriate for scientific cameras. In accordance
with Eq. 16, A is composed by

A = PzF
−1
b KFx, (18)

where Fx ∈ Cnv×nv takes the 2D discrete Fourier trans-
form (DFT) of each z-slice of the volume, K ∈ CnvQ×nv

is a stack of diagonal matrices that perform element-wise
multiplication with the incoherent OTF for each of the Q
aperture masks, F−1

b ∈ CnvQ×nvQ is a block diagonal DFT
matrix that takes the inverse 2D DFT along kx and kx, and
Pz ∈ RnpQ×nvQ applies a projection along z of the result-
ing PSF-convolved volume for each aperture mask setting.
This composition, with noise added, produces the final real-
valued vector I of the Q 2D sensor images.

Solution of inverse problem A variety of non-blind de-
convolution algorithms can be used to recover an optimal



estimate of x. We use the common Richardson-Lucy iter-
ative algorithm, which finds the maximum likelihood esti-
mation of the volume x given the Poisson-noised measure-
ments I, background signal b, and known matrix A [1]. We
maximize the log-likelihood of x given I and estimate b,
a convex optimization problem, via multiplicative gradient
descent updates:

x(q+1) = diag(AH1)−1diag[AHdiag(Ax(q) + b)−1I]x(q)
(19)

where AH is the adjoint of A. We implement the updates
with matrix-free operations of the forward image formation
and its adjoint, as described in the next section. The number
of iterations we run depends on the size of x and I.

Adjoint operation for deconvolution The adjoint opera-
tion AH equals the conjugate transpose of matrix A (Eqn.
18):

AH = F−1
x KHFbP

ᵀ
z (20)

where we have used the fact that the conjugate transpose
of the DFT matrix is the inverse DFT matrix. P ᵀ

z ∈
RnvQ×npQ can be understood as a back-projection of the
sensor image onto all z-slices in the volume, and KH

performs element-wise multiplication with the incoherent
OTF s and then sums the contributions to a given voxel
from each aperture. This intuitive understanding of AH is
useful because, rather than explicitly compute each entry of
A, a prohibitively large matrix, we can apply linear opera-
tors that perform the functions equivalent to matrix multi-
plication by A and AH .

Monte Carlo simulations of noise
We used the Monte Carlo method to generate multiple

instances of Poisson noise for various volume patterns, den-
sities, and photon counts. We found that the noise spec-
trum was flat with RMS value equal to the square root
of the mean image intensity. This equivalence could also
be derived theoretically by approximating Poisson noise as
signal-dependent, additive, zero-mean Gaussian noise. This
finding allowed us to set a uniform noise floor in our fre-
quency domain SNR analysis. Fig. 3 shows the noise spec-
tra along ky = 0 for simulated and averaged noisy sensor
images using a ring-shaped mask of a randomly generated
volume of point sources.

Implementation
Prototype implementation details Here we describe in
greater detail the equipment used in the prototype imple-
mentation of ALF. We used a commercial Olympus BX-63
microscope with a 20x 0.5 NA Olympus Plan Fluorite ob-
jective for all the experiments. We used a 4f-system ex-
tension (f1 = 150 mm, f2 = 300 mm) for easy access to
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Figure 3. Poisson noise spectra along ky = 0 for different mean
image intensities through a ring-shaped aperture mask.

a conjugate pupil plane and to add an additional 2x mag-
nification to more clearly see the diffraction-limited reso-
lution. For epi-fluorescence imaging we used a mercury
lamp (Olympus U-HGLGPS) with filter cube (Olympus U-
FBNA) with excitation filter BP 470-495, dichroic mirror
DM 505, and emission filter BP 510-550. Images were
taken with the Hamamatsu Photonics ORCA-Flash4.0 V2
digital CMOS camera.

Aperture masks, sized according to the back aperture of
the objective, were printed by Fineline printing at 50,800
DPI, mounted on magnetic quick release plates (Thorlabs
CP90F), see Fig. 4, and placed at the pupil plane on a mo-
torized rotation mount (Thorlabs PRM1Z8). Ring aperture
masks had a ring width of 0.23 mm. This design required
use of only a few different printed masks for reproducibly
placing the aperture mask at desired grid points. For the
resolution chart sample, non-centered masks were rotated
in 60 degree increments to 6 different center locations, and
an image was taken through each aperture position. For the



Figure 4. Printed amplitude masks on magnetic mounts used in
prototype.

fluorescent bead and pollen samples, non-centered masks
were rotated in 30 degree increments to 12 different center
locations.

PSF calibration In an ideal setup, we could use the
printed aperture mask templates directly in our PSF gen-
eration model to find the PSF for each aperture mask. In
practice, uncertainties in exact placement of aperture masks,
rotation angle of the rotating mount, and alignment of other
optical components cause disparities between the simulated
and empirical PSF, requiring further calibration of the sim-
ulated PSFs. For calibration, we collected a focal stack
across +/- 100 µm of a 1 µm green fluorescent bead with
each aperture mask positioned at desired rotation angles.
First, for each aperture mask, we determined the angle of
rotation from the x-axis (perpendicular to the optical axis)
by fitting a line to the centroids of the PSFs across defocus
depth. Next, we fit the exact radius from the optical axis to
the center of mass of the aperture opening based on the rate
at which the PSF translated with defocus. Further, we fit a
small spherical aberration coefficient d for the optical setup
(caused mostly by the lenses of our 4f system and an in-
ability to perfectly set the distances between lenses), which
could easily be incorporated at the pupil plane of the for-
ward model. Primary spherical aberration with parameter d
was added as a radially symmetric phase mask in the PSF

generation model according to:

ρ =
√
k2x + k2y (21)

φ(d, ρ) = d
√

5
(
6ρ4 − 6ρ2 + 1

)
(22)

W (kx, ky) = exp(i2πφ(d,
√
k2x + k2y)) (23)

¯ATFz(kx, ky) = ATFz(kx, ky)W (kx, ky) (24)

where ATFz is the ATF described in Eq. 4 and ¯ATFz is
the ATF modeled with spherical aberration. Finally, we fit
the exact size of each aperture mask opening by comparing
the empirically measured and simulated PSFs.

Experimental results
Fluorescent bead sample reconstructions In Fig. 5, we
show a reconstruction of a 1 µm fluorescent bead at the fo-
cal plane and a pair of fluorescent beads 35 µm from the fo-
cal plane. With ALF-rings it is slightly clearer that there are
actually two beads shown at z = 35 µm. We also include the
maximum intensity projections of the entire captured bead
volume (approximately 160x160 µm laterally and 100 µm
axially) to demonstrate larger FOV reconstruction capabili-
ties of ALF. We encourage the electronic reader to zoom in
to examine the reconstruction differences with the different
aperture mask schemes of beads near the focal plane and
farther from the focal plane.

Pollen grain reconstruction cross-sections In Fig. 6 we
include three z-cross-sections of the reconstructed pollen
grain volume, for each of LF-pinholes, ALF-circles, and
ALF-rings. We also show a full aperture focal stack, with
and without deconvolution. The distance between consec-
utive displayed slices is 9 µm. Since in this case the focal
stack is not undersampled, the deconvolved focal stack is
expected to have the best performance. Nonetheless, the
performance of ALF-circles is closely comparable.
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age deblurring with poisson data: from cells to galaxies. In-
verse Problems, 25(12):123006, 2009.

[2] M. Broxton, L. Grosenick, S. Yang, N. Cohen, A. Andalman,
K. Deisseroth, and M. Levoy. Wave optics theory and 3-d
deconvolution for the light field microscope. Optics express,
21(21):25418–25439, 2013.

[3] J. W. Goodman. Introduction to Fourier optics. Roberts and
Company Publishers, 2005.

[4] J. Mertz. Introduction to optical microscopy. Roberts, 2010.
[5] D. Nishimura. Principles of Magnetic Resonance Imaging.

Stanford University, 2010.



LF-pinholes ALF-circles ALF-rings

be
ad

 a
t z

 =
 0

 µ
m

be
ad

s 
at

 z
 =

 3
5 

µm

x

z

y

z x

y

aspect ratio to scale

3 µm

fu
ll 

vo
lu

m
e

MIPz

aspect ratio not to scale

MIPx

MIPy
x

z

y

z
y

x

MIPzMIPx

40 µm

MIPy

Figure 5. Experimental results from captured data of a specimen
composed of 1 µm fluorescent beads in agarose with LF-pinholes,
ALF-circles, and ALF-rings. (top) Maximum intensity projections
(MIPs) of one or two beads at the focal plane and 35 µm from
the focal plane. Green scale bars measure 3 µm. (bottom) MIPs
of the full reconstructed volume, measuring 160x160 µm across
with 100 µm thickness, limited only by the actual thickness of the
sample. Yellow scale bars measure 40 µm. All techniques used a
budget of 25 captured images.



Figure 6. Cross-sections of a reconstructed volume of pollen grains using a focal stack, LF-pinholes, ALF-circles, and ALF-rings. Slices
of the focal stack without deconvolution are also shown. The distance between consecutive displayed slices (1, 2, 3) is 9 µm. Yellow scale
bars measure 40 µm. All techniques again used a budget of 25 captured images.


